
1AcknowledgementsI wish to thank �rst of all my Director of Studies, Kate Norrie, for her expertiseand continual support through the duration of my research. Thanks also to my other twosupervisors: Phil Curran, for providing me with insights into the medical scene and a usefulcase study; and to Peter Forte, for keeping up my enthusiasm during the rather lengthyprocess of writing up. Additional thanks to the other researchers in the CSES Research Lab,the School secretaries and the technical support. I also acknowledge the �nancial supportof the EPSRC who provided me with a research studentship.I would like regarding the technical content to make special mention of AndrzejWardzi�nski and Glenn Bruns for encouraging me in the lines of research I most wanted topursue. Also, I'm grateful to Alfred Crabtree, FIEE, for instilling in me a greater awarenessof the wider setting.Finally, the research would not have been completed without moral support, es-pecially from my parents, and also Sandy Martin, Thaer Sabri plus anyone else who hashelped me on the way.

2AbstractThe Use of Formal Methods for Safety-Critical SystemsAn investigation is presented into the use of formal methods for the productionof safety-critical systems with embedded software. New theory and procedures are testedon an industrial case study, the formal speci�cation and re�nement of a communicationsprotocol for medical devices (the Universal Flexport protocol c).On reviewing the current literature, a strong case emerges for grounding any workwithin an overall perspective that integrates the experience of safety engineering and thecorrectness of formal methods. Such a basis, it is argued, is necessary for an e�ectivecontribution to the delivery with assurance of life-critical software components.Hence, a safety-oriented framework is proposed which facilitates a natural owfrom safety analysis of the entire system through to formal requirements, design, veri�ca-tion and validation for a software model undergoing re�nement towards implementation.This framework takes a standard safety lifecycle model and considers where and how for-mal methods can play a part, resulting in procedures which emphasise the activities mostamenable to formal input.Next, details of the framework are instantiated, based upon the provision of acommon formal semantics to represent both the safety analysis and software models. Aprocedure, FTBuild , is provided for deriving formal requirements as part of the process ofgenerating formalised fault trees. Work is then presented on establishing relations betweenformalised fault trees and models, extending results of other authors. Also given are somenotions of (property) conformance with respect to the given requirements.The formal approach itself is supported by the enhancement of the theory of con-formance testing that has been developed for communication systems. The basis of thiswork is the detailed integration of already established theories: a testing system for processalgebra (the Experimental System due to Hennessy and de Nicola) and a more general ob-servation framework (developed by the LOTOSphere consortium). Notions of conformanceand robustness are then examined in the context of re�nement for the process algebra, (Ba-sic) LOTOS, resulting in the adoption of the commonly accepted 'reduction' relation forwhich a proof is given that it is testable. Then a new algorithm is developed for a single(canonical) tester for reduction, which is uni�ed in that it tests simultaneously for both con-formance and robustness. It also allows, in certain cases, a straghtforward implementationas a Full LOTOS process with the ability to give some diagnostics in the case of failure.The text is supported by examples and some guidelines for use.Finally, having established these foundations, the methodology is demonstratedon the Flexport protocol through two iterations of FTBuild which demonstrate how theactivities of speci�cation, safety analysis, validation and re�nement are all brought together.

3
ContentsList of Figures 8List of Tables 91 Overview of Thesis 101.1 Aim and Objectives : 101.2 Structure of thesis : 102 Introduction 142.1 Software in Safety-critical systems : 142.1.1 The Role of Software in Safety-critical systems : : : : : : : : : : : : 142.1.2 Terminology : 152.2 Traditional Systems Engineering Approaches : : : : : : : : : : : : : : : : : 162.2.1 Hazards Analysis : 162.2.2 Risk Assessment and Safety Integrity : : : : : : : : : : : : : : : : : : 172.2.3 Safety Integrity and Assurance : 192.2.4 Software Safety : 192.3 A Generic Framework: The Safety Lifecycle Model : : : : : : : : : : : : : : 222.3.1 Safety Aspects in Software for Medical systems : : : : : : : : : : : : 242.3.2 Observations on software within the System setting : : : : : : : : : 262.4 Formal Methods for Safety-critical systems : : : : : : : : : : : : : : : : : : 272.4.1 Motivation for their use : 272.4.2 De�nition : 282.4.3 Formal analogues of safety-related aspects : : : : : : : : : : : : : : : 302.5 Introduction to main formalisms used in thesis : : : : : : : : : : : : : : : : 312.5.1 Transition Systems and Labelled Transition Systems : : : : : : : : : 322.5.2 Process Algebras : 332.5.3 LOTOS : 332.5.3.1 Examples : 332.5.4 Modal and Temporal Logics : 342.5.4.1 Modal Logics : 352.5.4.2 Modal Logic for Processes : : : : : : : : : : : : : : : : : : : 352.5.4.3 Temporal Logics : 372.6 Formal Validation and Veri�cation : 382.6.1 Notions of consistency between models : : : : : : : : : : : : : : : : : 392.6.2 Methods of Proof : 412.6.2.1 Simplifying the Computation : : : : : : : : : : : : : : : : : 43

42.6.3 Tool Support : 452.6.3.1 Theorem Provers : 462.6.3.2 Model-checking and Others : : : : : : : : : : : : : : : : : : 462.6.4 Validation Issues : 472.7 Medical Examples : 482.7.1 Medical Communications: background to Flexport : : : : : : : : : : 492.8 Conclusions : 513 A Framework for the Safety-oriented Formal Re�nement of Systems 523.1 Introduction : 523.2 Appraisal of Safety-critical systems and Formal Methods : : : : : : : : : : : 523.3 Strategies for a coherent approach : 543.3.1 Summary and scope for this thesis : : : : : : : : : : : : : : : : : : : 563.4 Foundations for safety-based development : : : : : : : : : : : : : : : : : : : 573.4.1 Introductory concepts : 583.4.2 Safety-related principles : 603.5 Analysis of the Safety Lifecycle Model with regard to Formal Methods : : : 613.5.1 Overview of Hazards and Risks : 613.5.1.1 Hazard Identi�cation : 623.5.2 Formalizing hazards for requirements analysis : : : : : : : : : : : : : 633.5.2.1 The Hazard Existence Problem : : : : : : : : : : : : : : : : 633.5.2.2 Reasoning about Hazards : : : : : : : : : : : : : : : : : : : 653.5.2.3 Example: Insulin Delivery System : : : : : : : : : : : : : : 673.5.3 Safety integrity : 693.5.4 Design, veri�cation and validation : : : : : : : : : : : : : : : : : : : 733.6 Managing the re�nement : 733.6.1 Implementing Change as Formal Transformation : : : : : : : : : : : 743.6.2 Con�guration Management : 753.6.2.1 Items, Con�gurations and Con�guration Graphs : : : : : : 763.6.2.2 Strands within CM : 773.6.2.3 Target baselines for CM : 793.6.2.4 Recording Changes in the Re�nement's CM : : : : : : : : : 803.6.2.5 Tool Support : 813.6.3 Risk Management : 823.7 Observations and Conclusions : 844 The provision of safety requirements from fault trees and their validationin formal models 874.1 The use of FTA for software : 874.1.1 Summary of the technique : 884.1.2 Using formal methods to assess the suitability of FTA for software : 924.2 Semantics of fault trees : 954.3 Constructing Fault trees and deriving safety requirements : : : : : : : : : : 974.3.1 From FTA to safety requirements : 974.3.2 Veri�cation and Validation : 984.3.3 Motivation for an iterative approach to constructing fault trees : : : 994.3.4 Procedure FTBuild for fault tree construction : : : : : : : : : : : : 1014.3.5 Issues in the analysis of formalised fault trees : : : : : : : : : : : : : 103

54.3.6 Generating safety requirements from fault trees : : : : : : : : : : : : 1044.3.6.1 Example of Gate Semantics and Requirements Derivation : 1094.3.7 Evaluating safety requirements : 1104.3.7.1 An algorithm for evaluating a predicate for a particularsafety requirement : 1104.4 De�ning relations between models and fault trees : : : : : : : : : : : : : : : 1124.4.1 Establishing criteria for relations between fault trees and models : : 1134.4.2 A common semantics for fault trees and models : : : : : : : : : : : : 1144.4.3 General conformance relations : 1154.4.4 Further generalisation of conformance : : : : : : : : : : : : : : : : : 1164.4.5 Consistency relations for models undergoing re�nement : : : : : : : 1174.5 Conclusions : 1205 A Theory of Robust Conformance Testing 1215.1 Introduction : 1215.2 Background to Testing in the Formal Context : : : : : : : : : : : : : : : : : 1225.2.1 Testing as an alternative validation and veri�cation activity : : : : : 1245.3 Some testing notions illustrated formally in LOTOS : : : : : : : : : : : : : 1255.3.1 Test Requirements : 1255.3.2 Test analysis : 1285.3.3 Some example testers : 1295.4 A generic formal framework for Testing : 1305.4.1 Notions of conformance and re�nement : : : : : : : : : : : : : : : : 1315.4.2 A formalisation of behavioural conformance : : : : : : : : : : : : : : 1325.4.3 Observers and Tests : 1335.4.4 Incorporating an Experimental System due to Hennessy and de Nicola 1355.4.4.1 Testing relations : 1375.4.4.2 Instantiating the Experimental System with LTS Opera-tional Semantics : 1395.5 Establishing Robust Conformance as a testing relation : : : : : : : : : : : : 1395.5.1 Preliminary De�nitions and Results : : : : : : : : : : : : : : : : : : 1405.5.2 Notes and Examples : 1425.5.3 Some Guidelines for use of conformance in re�nement : : : : : : : : 1445.5.4 Proof that reduction is a testing relation : : : : : : : : : : : : : : : : 1465.6 A Canonical Tester for robust conformance in LOTOS : : : : : : : : : : : : 1515.6.1 Introduction : 1515.6.2 Outline of Methodology : 1525.6.3 Derivation of Uni�ed tester : 1555.6.3.1 Preliminaries : 1555.6.3.2 Construction, Properties and Examples : : : : : : : : : : : 1595.6.4 A Special Case : 1635.7 Implementation in a subset of Full LOTOS : : : : : : : : : : : : : : : : : : 1645.7.1 Main procedure : 1655.7.2 Special Case : 1665.7.2.1 LOTOS 'procedure' TestEvent : : : : : : : : : : : : : : : : 1685.7.3 Observations : 1695.8 Discussion: Alternative notions of conformance : : : : : : : : : : : : : : : : 1705.8.1 Comparison between two notions of conformance : : : : : : : : : : : 171

65.9 Conclusions : 1726 Case study: Flexport 1746.1 Introduction : 1746.2 Instantiating in the Lifecycle Framework : 1756.2.1 Main Terms : 1766.2.2 Requirements Analysis : 1776.3 Overview of the Flexport protocol : 1786.3.1 Intensional and Extensional Views : : : : : : : : : : : : : : : : : : : 1806.4 Con�guration Management Plan : 1826.4.1 Classi�cation of the items in the system : : : : : : : : : : : : : : : : 1826.4.2 Baselines : 1846.4.3 Item Identi�cation : 1856.4.4 CM and Version Control : 1876.5 Overview of system construction : 1896.5.1 Architectural Design of the Intensional Speci�cation : : : : : : : : : 1896.5.2 Behaviour : 1916.5.3 The use of a template for the intensional speci�cation : : : : : : : : 1926.5.4 Re�nement and Veri�cation : 1936.6 Applying FTBuild : First Iteration : 1936.6.1 Fault Tree Construction : 1946.6.2 Requirements Derivation : 1956.6.3 Incorporation of Requirements : 1976.6.4 Derivation of the Uni�ed Tester : 1986.6.4.1 Construction of the Tester : : : : : : : : : : : : : : : : : : 1986.6.5 Results : 1996.7 Applying FTBuild : Second Iteration : 2016.7.1 Safety Analysis of Speci�cation No. 2 : : : : : : : : : : : : : : : : : 2026.7.2 Safety Requirements : 2046.7.3 Modi�cations, Further Analysis and Results : : : : : : : : : : : : : : 2056.8 Experiences in development : 2086.8.1 Building of the fault trees : 2086.8.2 Re�nement and Validation : 2086.8.3 On the use of Con�guration Management : : : : : : : : : : : : : : : 2096.8.4 On the Use of Tools : 2096.9 Observations and Conclusions : 2117 Conclusions 2147.1 Summary of Contribution : 2147.2 Results and Assessment of Contribution : 2177.2.1 The safety-oriented framework : 2187.2.2 The Procedures : 2197.2.3 The Main Theoretical Contribution : : : : : : : : : : : : : : : : : : 2207.2.4 Findings from the Case Study : 2217.3 Scope for Future Work : 2227.3.1 Towards a fully automated tool for formalising safety analysis : : : : 2257.3.2 Other avenues : 227

7A LOTOS de�nitions 228B Guide Words for Flexport 230C Tool Summary 232D LOTOS speci�cations 234D.1 Flexport Intensional Speci�cation : 234D.2 Uni�ed Tester : 249D.3 Outputs : 261E Summary of Versions for Flexport 263F Flexport De�nition : Ambiguities or other suspected errors 264G Risk Management Example 266H Questionnaire 268Bibliography 269

8
List of Figures2.1 ALARP model of risk levels : 202.2 Safety Lifecycle Model : 232.3 Formal Methods: capture, analysis and re�nement in Software Development 293.1 Fault Tree for Insulin Delivery System : 693.2 A generic Graph of re�nement in CM : 773.3 The Lifecycle Model and its bearing on the formal re�nement : : : : : : : : 864.1 Part of Fault Tree Analysis for a remotely controlled robot : : : : : : : : : 894.2 An incremental model for concurrent FTA and model re�nement : : : : : : 1006.1 Flexport's layered architecture : 1796.2 Re�nement Graph of Main Baselines : 1856.3 Re�nement Graph of Intensional Speci�cation : : : : : : : : : : : : : : : : : 1886.4 Fault Tree for system (ICU) : 1946.5 The extension to the ICU Fault Tree resulting from the �rst iteration : : : 1956.6 Extension to the ICU Fault Tree resulting from the second iteration : : : : 204A.1 Notation for LOTOS and its LTS : 229A.2 LOTOS Transition Rules : 229

9
List of Tables3.1 A Risk Management Log : 824.1 Veri�cation and Validation with respect to Safety analysis and Models : : : 996.1 Flexport De�nition: Link Connection : 1806.2 Flexport De�nition: Message Sequence Chart : : : : : : : : : : : : : : : : : 181G.1 Example RM Log for Flexport : 266

10Chapter 1Overview of Thesis1.1 Aim and ObjectivesThe aim of this thesis is to investigate how the use of formal methods may bee�ectively realized for the production of safety-critical systems.The objectives are:1. To propose a framework for the overall system that enables the role of formal methodsto become clear;2. To establish closer links between safety analysis and formal representations;3. To enrich formal theory itself in response to typical safety requirements;4. To validate the theory and methods in an industrial case studyA particular feature of this thesis is that safety-related properties in the formalcontext are generated in a manner that is designed to enable justi�able assurance: theyshould be easily traceable back to the safety analysis for the system.1.2 Structure of thesisThe objectives are tackled as follows.The initial sections of Chapter 2 present an overview of the use of formal methodsfor safety critical systems. They start by describing how issues such as reliability and safetyhave been treated in engineering as a whole, methods which have gained a good deal ofmaturity. After this are discussed some of the current views on and approaches to theproduction of safety-related software, including the use of standard models. Using these

11models, it is shown how safety concepts may be highlighted and where and how formalmethods may play a key role. Some motivating examples are provided to make explicitsome of the technical issues.In chapter 3 a proposal is presented, setting out the motivation for and aims ofa safety-oriented framework for the re�nement of formal speci�cations. This is based onthe consideration of a standard Safety Lifecycle Model and how it can support the formalactivities. To facilitate more e�ective use of formal methods, some essential 'project hygiene'is incorporated within the lifecycle model, including aspects of Con�guration Managementplus the indication of how tools may be used. From the perspective of formal methods, wediscuss how their use necessarily raises issues about the framework itself. Accordingly, tosupport the central construction role of formal methods, we discuss some formalisation ofaspects of the design cycle with particular regard to their relationship to formal models.We elaborate on this aspect of the framework in chapter 4, focusing on methods tointegrate speci�c safety analysis techniques with the formal development, showing how for-malising the analysis can aid in understanding the system. There are a range of techniquesavailable, from which we choose to concentrate on one particular type, fault tree analysis,which has received relatively more attention that others, though this is still rather modest.Indeed, on reviewing the state of the art, it is evident that most of the work has tended toconcentrate on providing semantics for the trees.Here, a procedure FTBuild is provided which is centred around the formalisationof a fault tree. It develops the tree step by step and independently of the semantics chosenand shows how this can be tied into the development of models. In particular, the formalisedtrees are used as the basis for the generation of safety requirements for models, which wesupport by the listing of some issues and criteria. Having established the requirements,we then build on some work by Bruns and Anderson [Bru93], by introducing some newgeneral relations for property conformance between a set of safety requirements derivedfrom formalised fault trees and a model. These relations allow exibility in the choice ofrequirements, to take account of the potential disparity in stage of development betweenthe requirements derivation and the model construction. The requirements generated are ingeneral any kind of predicate { they can be logical formulae for a given model, or relationsbetween models. All we assume is that they all are semantically based in labelled transitionsystems. Regarding the relations between models, there are a number of notions availablewhich de�ne what constitutes a valid re�nement from one model to another. One of thesenotions is conformance, which has particular relevance in the �eld of communication pro-

12tocols. This leads us to the consideration of valid re�nements of safety-critical protocols,which require two properties to hold { conformance (implementing what has been pre-scribed) and robustness (not implementing what is disallowed). Further, since in practicean implementation cannot be examined internally, methods of testing have been developedto determine whether or not there is conformance on the basis of external observations {conformance testing.There has been considerable work on conformance testing, but little on robustness,often in view of the state explosion problem. However, there are cases where there is not thisproblem, for instance when part of a protocol consists in e�ect of accepting only certainpermutations on a �nite alphabet { which is the case for the protocol we examine. Asrobustness is critical for safety, we investigate ways of testing for it, motivating a formaltheory of robust conformance testing for process algebras, the subject of chapter 5.The chapter starts with an introduction cum survey showing how notions of testingin engineering may be given meaning in a formal setting, speci�cally for the ISO speci�cationlanguage LOTOS [ISO89a]. This motivates the de�nition of an already existing observationframework which was developed as a task in the LOTOSphere project for conformancetesting (Task 1.3, [ABe+90]). This framework underpins the subsequent work, which startsby showing in some detail how it may incorporate the Experimental System of Hennessyand De Nicola as detailed in [Hen88].The main application of the theory is then presented, leading to an algorithmthat is proposed for deriving a canonical tester for the commonly accepted notion of robustconformance called reduction. The tester is uni�ed in that it tests simultaneously for ro-bustness (trace inclusion) and conformance. Further, for a special case, a method is givenfor implementing the algorithm for its tester as a (Full) LOTOS speci�cation which has thedistinctiveness of providing special diagnostics in the case of failure. Finally, there is somediscussion of the work in the light of practice, including the consideration of alternativeformalisations of conformance, for which a new relation is suggested.The work culminates in chapter 6 with an application of the methodology andtheory to the modelling and analysis of the Universal Flexport protocol for medical devices.The protocol speci�es how a third party device should be connected to a proprietary sys-tem, henceforth referred to simply as Flexport. Our project presents an instantiation ofthe general framework developed earlier, and operates according to a Con�guration Man-agement plan. The main task is to re�ne speci�cations in LOTOS of the link connectionphase, all subject to version control. The process of re�nement is centred around two itera-tions of FTBuild , so the methodology is requirements-driven, with detailed safety analysis

13prompted by the fault trees.Within this context are presented distinct approaches to veri�cation and valida-tion, which we contrast and compare. Among the veri�cation tasks, we show the consistencyof two distinct views (intensional and extensional) of the protocol speci�cation and thenthe consistency of a further re�nement which incorporates more detail. The validation re-quires proof of some safety related properties, particularly liveness. The methodologies weemploy for the veri�cation are based upon observation equivalence and the testing rela-tions developed earlier; the validation is conducted through simulation, testing and modelchecking.Finally, in chapter 7, we present a summary of our investigation and its contri-bution to the subject area, o�ering as the main outcome a re�ned perspective on how toproduce systems in which we may be con�dent that they ful�l the safety requirements ofusers. This is concluded by some directions for future research { it is evident there is agreat deal of scope.

14Chapter 2Introduction2.1 Software in Safety-critical systems2.1.1 The Role of Software in Safety-critical systemsSoftware is playing an increasingly important role in systems, most notably inembedded systems, where it is used to control machines. A growing number of these systemsare safety-critical, where there is risk to life. When we make use of such systems, wetrust that their risk has been minimized, so that the operation of the controlling softwarecomponents are e�ectively safe. Not only that, we also expect them to be reliable, coste�ective and possessing of many other attributes. Those responsible for designing anddelivering safety-critical systems must ensure that they can satisfy these requirements andbe able to demonstrate this, ideally in a manner accessible to all who use the system, oftenvia public bodies such as standards authorities.The urgency to address this area comes not least from fatalities that have beensubstantially due to software-related errors { for instance, overdoses from Therac-25, alinear accelerator for treating cancer through radiation [LT93] and the overshooting of therunway at Warsaw airport by an Airbus A320 [Mai94]. Other hazardous incidents such asthe Ariane V rocket going o� course may not have cost lives, but have certainly proved thatdesign errors are expensive [Lio96].This is a problem that is well known to other engineering disciplines and overthe years experience has been accumulated to provide e�ective solutions: the technologyhas been available and it has been shown to work with a very high degree of con�dence.Software, although a fairly recent phenomenon, is also classi�ed as an engineering discipline,so it would seem natural that one can apply the insights and quickly surmount any hurdles.However, whilst it is true that engineering insights can and should be applied (as is the

15contention of this thesis), it has become evident that software is in some ways another'kettle of �sh' altogether. In the next sections we discuss what the problems are, and theapproaches to tackling them, leading onto the need for formal methods and how that mayused to help the situation.2.1.2 TerminologyWe provide some de�nitions to establish clearly what is being discussed and anal-ysed, starting with terminology covering any kind of system and then introducing someterms speci�c to software.Safety is a value judgement, perceived essentially as protection from loss (or injury),be it physical, social or environmental.A hazard is a set of conditions in which the protection is reduced, that is unsafe tosome degree, and has an associated risk of loss.Risk is de�ned in terms of three factors: the likelihood of a hazard occurring, thelikelihood of the hazard leading to an accident, and the severity of the worst possiblepotential loss resulting from such an accident.An accident is an event which occurs in an unsafe state and results in loss.Whether explicitly or implicitly, a system is usually assessed at the outset withregard to safety considerations. Where it has been assessed that safety is an explicit require-ment then we de�ne (in a goal-oriented fashion) safety-related systems as those systems bywhich the overall safety of a process, machinery or equipment is assured [B. 89, Wic92]. Assoon as the requirements are speci�ed, they form the central plank for the development: thewhole design process then becomes driven by the requirements (a fundamental view, whichwe adopt for the formal development). We refer to those requirements related to safety assafety-related requirements (or simply safety requirements).The behaviour of systems can have consequences that vary in adversity, so we addanother de�nition:A safety-critical system is a safety-related system in which the potential loss is veryserious, a primary example being human fatality.Many safety-related systems depend on computer software which monitors andcontrols various aspects such as physical equipment through direct interfaces. Computer

16systems which act in this way as information processing components are known as embeddedcomputer systems. Where software is a component of a safety-related system, we may referto safety-related software.Software is by itself relatively safe { it does not per se threaten great loss. However,software-related errors may be very hazardous and cause great risk. The software engineer'stask as regards issues of safety may then be expressed as trying to ensure that the safety-related software contributes towards a safe overall system. The software engineer's briefmay now be summarised as: to design and produce software with appropriate integrity andto provide assurance of this integrity as part of the overall system.Safety is just one aspect that is desirable; a more general view of requirements maybe encompassed in the framework of dependability. This is de�ned as \the trustworthinessof a computer system such that reliance can justi�ably be placed on the service it delivers".A framework that discusses dependability, based on this de�nition, is given in [Lap93]. Itprovides, in particular, a classi�cation of attributes that are typically needed for a system {availability, reliability, safety, con�dentiality, etc. { and goes on to consider the factors thatdetermine the extent one can place dependence on the system to satisfy these attributes.The interdependence between the hardware, software and operating environmentof the system motivates a discussion of approaches to systems safety, given next.2.2 Traditional Systems Engineering ApproachesA safe system can be characterised as one in which risks from hazards have beenminimised throughout system life. The process of providing hazard analyses and risk as-sessments are thus crucial activities to ensure the safety of the system.2.2.1 Hazards AnalysisFor any system, the provision of safety starts with hazard analysis, for whichvarious techniques may be employed. Recognising that a system has many parts, one may,for instance, take a modular approach consisting of System Hazard Analysis (SHA) andSubsystem Hazard Analysis (SSHA). SHA studies the hazards associated with the systemas a whole or the interfaces between its subsystem components, whilst SSHA studies howthe operation of a given component a�ects the overall system.These analyses are performed by applying a range of techniques which are welldocumented and generally covered by standards. They also range in scope: conducted at

17the broadest level (with the greatest amount of brainstorming) are hazard and operabil-ity studies (HAZOP) [Che87]. HAZOP, devised originally to support the chemical processindustry, takes a representation of a system and analyses how its operation may lead toan unsafe deviation from the intent of the system [Che87] with special attention to theenvironment of operation. It is a methodology that is now more widely embraced: guide-lines are now being produced by the UK Ministry of Defence for systems with embeddedprogrammable electronic systems [Def95].Where a system is self contained, having its boundaries well de�ned, one focuseson the hazards that are internal to the system, which may be termed faults. Thus a faultis always a hazard, but not conversely (we do not, for instance, regard bad weather as a'fault'). At this level, we have the techniques of fault tree analysis (FTA) [Bri83, VGRH81].In BS5760 [Bri83] we have:\fault tree analysis ... consists of an analysis of possible causes starting at a systemlevel and working down through the system, sub-system, equipment and component,identifying all possible causes."In trying to determine possible causes of a fault in a fault tree, one can look atthe operation of various components (which can be regarded as a HAZOP activity).Other techniques include failure modes, e�ects and criticality analysis (FMEA andFMECA) [Bri91]. Further, as a project develops, one may perform design speci�c analysessuch as design reviews, audits and walkthroughs. For a more detailed discussion of systemhazard analyses with a software perspective, good coverage is provided in [Lev91].2.2.2 Risk Assessment and Safety IntegrityIn general, systems risk assessment is derived from data available { about hazards,analysed as above; from similar systems which have been implemented in the past; fromthe reliability assessments of components of the system being developed; and other sources.The result of risk assessment should be some kind of gradation and may be expressedin terms of what constitutes tolerable and intolerable risk. Tests applied for regulatingindustrial risks echo those we take ourselves in our personal lives and involve determiningwhether risk is unacceptable, acceptable or somewhere in between. There are a lot offactors which determine what is 'tolerable' or otherwise, so both quantitative and qualitativeanalyses are used, e.g.s graphs and classi�cations [BR93]. Using a risk classi�cation ofaccidents according to frequency and severity usefully serves as a relatively simple basis forits determination. In safety-critical systems we focus naturally on the resulting 'intolerable'risks or those risks which are close to intolerable.

18Only when the risks have been assessed can we decide upon the necessary levelsof safety that we expect the system to achieve from its various functions. This is the issueof safety integrity, which is de�ned as:Safety integrity is the likelihood of a safety-related system achieving the required safetyfunctions under all the stated conditions within a stated period of time [Wic92].Therefore, the task is to deliver a system of su�ciently high integrity to meetall the requirements. As the production of a system is a process, these procedures haveto be maintained throughout the development, requiring ongoing hazard and risk analysesboth in terms of the envisaged goal, the 'end product', and in terms of what may beregarded as an evolving design. As more information is revealed about possible operatingconditions, systems safety analysis is augmented. Consequently the activities contributingto the integrity may be characterised by two kinds of requirements:1. generation of new system safety requirements resulting from the design and develop-ment of the system2. ensuring that what is being built meets the requirements that have already beenspeci�edThe �rst of these is requirements analysis and consists of activities mentionedalready, including hazard analysis.The second of these are reliability engineering techniques, whose consideration mayhave to be sustained throughout the development as the design evolves with modi�cationto interfaces, rearrangement of components or other kinds of changes. The main measuresto achieve reliability emerge as a result of employing the techniques mentioned { such asFMECA, and FTA { and consist of fault forecasting, fault removal, fault avoidance andfault tolerance, together with methods that verify that the design has achieved the integrityrequired. They may be regarded as a combination of forward-looking and backward-lookingtechniques, operating on a model of cause and e�ect:-1. \If we start from here, where will this lead us? Where will there be a failure orfailures?"2. \What faults might we expect? How may they be arrived at?"In general, FMEA and FMECA deal with the former and FTA with the latter.

19In this approach, ensuring safety may then be characterised simply as a process ofreducing risks to appropriate e�ect. This consideration depends upon resources available.If a risk falls in between the states of 'intolerable' and 'acceptable' then any risk must bereduced to 'as low as reasonably practicable'. This is the ALARP principle as illustratedin Figure 2.1. The width of the triangle is proportionate to the level of risk and thus alsoto the amount of resources that can be justi�ed to reduce it.In summary, a system is conceived to perform certain functionality in the faceof hazards, whose risks are determined. These contribute in turn to further safety-relatedrequirements that are derived for the system and for which safety integrity levels are stipu-lated. Achieving the integrity means in e�ect that risks must be reduced, for which we mayapply the ALARP principle.A comprehensive survey of risks and safety integrity is provided in [BR93].2.2.3 Safety Integrity and AssuranceFinally, we must answer the question, \What assurance can you provide that thissystem is of such integrity?" In order that a system may be certi�ed as safe, there must beprovided a document which details the justi�cation of its safety. This is called the safetycase. It contains a record of all hazards, known as a hazard log, and various argumentsindicating why the system will reach the required safety levels in the face of the statedhazards. The safety case brings in all the aforementioned risk analyses, risk reductions andother integrity and reliability measures, often presenting various statistical evidence.This is a considerable task which involves lots of documentation. Accordingly,software has been developed and used to support this process, one tool being SAM (SafetyArguments Manager) that is able to support the process of developing safety cases, withthe intention of uniting both formal and informal material (including the often importantassumptions made) [FHMS93]. Here, software plays an e�ective supporting role, important,though not as crucial as many of its more direct applications.2.2.4 Software SafetySoftware may be engineered within the above kind of system setting and is asystem in itself, but there are some striking distinctive qualities which software possesses.Regarding its theoretical foundations, the discipline of software engineering is underpinnednot by classical laws of mechanics or thermodynamics, but by somewhat more abstractdiscrete mathematics. Consider for instance that a program can in theory always be relied

20
Intolerable Level

(Risk cannot be
justified on

any grounds)

BROADLY
ACCEPTABLE
REGION NEGLIGIBLE RISK

The ALARP REGION
Risk undertaken only if
a benefit is desired

TOLERABLE
only if risk reduction

is impracticable or
if its cost is grossly

disproportionate to the
improvement gained

The lower the risk, the less
proportionately it is

necessary to spend to reduce
it - the triangle reflects

the diminishing proportion.

TOLERABLE
if cost of reduction

would exceed the
improvement gained

(no needed for
detailed justification)Figure 2.1: ALARP model of risk levels

21upon to carry out its instructions, whereas in contrast a piece of hardware is subject towear and tear and will eventually fail.Software elements often have very dynamic relationships with diverse areas of therest of the system, the structures being much more uid than in hardware. Hence, it cannoteasily be assumed that a piece of software can easily be produced to 'slot in' as some kindof simple '�x'. A new external system requirement may need an unexpectedly complicatedsoftware recon�guration.All of this amounts to what was coined in 1968 'The Software Crisis' at a meetingorganised by NATO in which were convened some 50 top computing professionals. Thiscrisis had as its root cause the problem of complexity brought about in many cases by sheerlength of programs combined with a poor control over how each line of code a�ects theoverall system. Almost three decades later, this problem still remains as a recent reviewindicates [Gib94], and for safety critical systems, the problem is arguably still more keenlyfelt [McD93].In order to tackle the complexity issue, there have been initiatives at several levels,some of which are on a major industrial scale. The United States, which handles most of thelargest software projects, has produced a number of initiatives aimed at putting softwareproduction on a sound commercial footing. The Software Engineering Institute, funded bythe military, has produced a Capability Maturity Model (CMM)[PWCC95] by which maybe assessed the quality of management in a software engineering team. Some companieshave responded to this and subsequently seen their productivity increase signi�cantly. TheNIST has recently created an Advanced Technology Program to encourage a market incomponent-based software.There has been a lot of e�ort devoted to the management of software and the driveto make this relatively new discipline line up with the rest of industrial engineering; �guresindicate that the software has become more reliable since there are fewer bugs per N linesof code. However, how can one relate this to requirements for operation that are speci�edin terms such as 'failure rate of less than 1 in 109 hours of service'? These are requirementsin response to pretty well intolerable risks and at �rst sight this presents a frighteningly tallorder; perhaps only now is the enormity of the task clear.Statistical quanti�cation of software reliability in actual operation is problematic:besides the fact that software simply hasn't been around long enough for statistics thatyield su�ciently high reliability, its worth noting that each piece of software is individuallytailored, unique to a much greater extent than hardware set-ups. It has been argued (in[BF93]) that probabilistic and statistical methods are inadequate anyway, though this claim

22has been countered elsewhere.As a prerequisite to a realistic appraisal of the integrity of an embedded system,there needs to be an understanding of the nature of the e�ects of software on risk andintegrity, and hence ways of ascribing suitable �gures. It would then become clearer whatwould constitute appropriate justi�cation. These important issues still lie open, whichwe touch upon in the next chapter; a proper appraisal will take many years and requireconsiderable experience from and cooperation between academic and industry. There arefortunately some working groups that are moving towards its ful�lment and which havebeen active over a few years. These include the UK DTI/EPSRC Working Group whichhas examined over 30 projects in the UK [UK 97], and PROCOS, which is a Europeangroup supported by ESPRIT.Once these issues are better understood, we will know more about the extent ofthe task of providing the high integrity. It may be that this objective will only be achievedwhen it is accepted that this particular industrial sector is more inextricably and subtlydependent than others upon the underlying mathematical theory. Evidence that this isrecognised may be gleaned from industrial initiatives such as the 'cleanroom approach' toprogramming, as being experimented with by IBM and which incorporates formal notationssuch as Z[Spi92]. Thus the case for formal methods arises, detailed later.2.3 A Generic Framework: The Safety Lifecycle ModelIn recognition of the distinctive nature of safety-related systems, there has beendeveloped what is now the widely accepted Safety Lifecycle Model, which is an extensionof the standard Waterfall Model in engineering [B. 89, Wic92, BR93]. It is generic in thatit is valid across industrial sectors. The model is depicted in Figure 2.2.In order to produce safety-related software according to this framework, varioustechniques are recommended. These include the application of structured analysis tech-niques to generate a visible modular construction (the principles of modularity are ex-pounded in [Par72]), and diversity in design, implementation and maintenance to avoidfaults due to common mode failures. Many such techniques are very widely applicable,and although they are usefully brought into the safety-critical context, there is not so muchliterature devoted solely to their use in this speci�c area. Nevertheless, material is available:for instance, there have been reviews such as [CGW91] to help designers and managers asto the suitability of mainstream programming languages for safety-critical systems.A set of system-wide guidelines may not shed enough light on what actually con-

23
Hazard
Analysis

Risk
Assessment

Risk and Safety
Integrity Levels:
Influencing Factors

- Legislation
- International

Standards
- National Standards
- Safety Regulatory

Authority

Safety Requirements
Specification

Functional
Requirements
Specification

Safety integrity
Requirements
Specification

Designation of
Safety Related
Systems

Validation
Planning

Design and
Implementation

Verification

Safety
Validation

Operation and
Maintenance

System
Modification

Decommissioning

Retro - Fit

Back to
appropriate
phase of
Safety
LifecycleFigure 2.2: Safety Lifecycle Model

24stitute the safety issues unless they are uni�ed under a speci�c focus. Safety requires a lotof integrity and this is recognised in the safety lifecycle model which separates speci�cationof safety requirements into purely functional requirements (what the system should do) andsafety integrity requirements (the level of dependability expected of these functions). Thesafety integrity requirements are calculated individually for each of the functions previouslyidenti�ed. Having done this, one may concentrate on providing high levels of assurance onthe safety-critical aspects. (As an aside, note that if it is the case that there is always somefunctionality needed to ensure safety then there is an openly recursive loop.)We intend using the safety lifecycle model as a basis, with a view to ascertaining itssuitability to support the production of formal models with high integrity. Our contention isthat provided we treat carefully the non-functional requirements and put forward a selectionof viewpoints and methods highlighting further the safety concepts, which are often subtle,then the lifecycle model can be e�ective.Software-related systems in general may be characterised broadly by two funda-mental notions { data and behaviour. Associated with the former are tasks of informationprocessing, whereas with the later there is action and response related typically to the in-put/output of such data. Those systems, which are extensively involved in responding totheir environment are called reactive systems. They are \systems that are heavily con-trol driven or event driven ... Their role in life is ... predominantly to react to manydi�erent kinds of events, signals, and conditions in intricate ways. Reactive systems neednot necessarily be concurrent, but usually are." [Har87]. Such systems include communi-cation systems, for which the Flexport communications protocol studied in this thesis is anexample.2.3.1 Safety Aspects in Software for Medical systemsIn this section we illustrate how safety aspects may be highlighted when consideringthe use of software within a medical setting. One technique is to provide alternative viewson the same system, depending upon the task at hand.For the task of requirements analysis, one view can consist of analysing a systemin terms of scale { the degree of granularity; and level of abstraction { the extent to whichselected details are ignored. As an example, let us take as a speci�c scenario a MedicalInformation System in a hospital, which allows various patient details to pass through anetwork between, for example, the central �le server, the operating theatre and the inten-sive care unit (ICU). Such a system has numerous interdependent software components atvarious levels, ranging from Windows applications to 'low level' network drivers. An ICU, a

25component, has its own information system spanning a network of medical devices attachedto bedsides. It consists of a number of component computer systems managing various taskssuch as information processing of patient lifesigns { a Patient Data Management System(PDMS) { and the supporting communications network which should guarantee the correctdelivery of the data from a bedside to the nurse's console.Thus we may derive a component view of the system, an approach similar to SHAand SSHA, concerned with:1. Internal-External interaction between system and environment, i.e. the interface.2. Internal Localised Safety properties { workings hidden from the external environment.The terms 'internal' and 'external' are relative: through successive abstraction wemay choose that on one level we identify a system as a component co-operating withinan environment and on another level, where it is of no relevance in the chosen setting, ashidden or swallowed up. A nurse or doctor does not wish to know about the sequence ofbits which travel along the cables between the bedside communications controller and adevice communications controller, say. However, their diagnoses will certainly depend uponthe correct transmission of the 0s and 1s. The software which is used by the medical sta�has abstracted out from the internal workings of the system, workings which are internalisedsafety properties, as in 2.A nurse will be keen, however, to know about what is displayed on the console: thisinvolves safety aspects in interaction, as in 1. We make the extra distinction between thehuman-computer interaction (HCI) and any computer-computer interfaces, for the �eld ofHCI deserves a great deal of consideration. A typical fault tree showing paths to failures orerrors in a Patient Monitoring System will usually contain a signi�cant proportion of failuremodes (root causes) which involve some inappropriate response to a computer output. Itcould be that a nurse or a doctor does not interpret correctly a certain visual display oran audio signal. There is always a chance of misinterpretation, but more research andconsultation between designers and users would minimise this risk. Fortunately, HCI hasmade great strides in the past decade as can be seen in a textbook such as [J. 94].For the task of achieving the integrity levels stipulated for certain componets inoperation, one view can focus on the nature of the faults. Requirements can then be re�nedto accommodate these faults. This can be considered as part of FMECA. Using the samemedical example, we may classify the nature of potential faults (with regard to examiningtheir e�ects) as:

261. Explicit global Consider instances where an oxygen mask slips o� a patient or wherethe plug is accidentally pulled out of a socket. Here we deal with safety propertieswhich are expressed in terms of the overall system as viewed externally: these are interms of the \physics" of the environment give rise to explicit requirements. We referto the external system as the plant.By their external nature, particularly if they are relatively large scale considerations(as with nuclear power stations), government legislation may be suitable for settingappropriate levels.2. Implicit local Consider instances where a system simply freezes up or engages in anendless loop state where no further useful action is available. The safety propertiesto prevent these occurrences may be ignorant of the overall application and give riseto requirements in terms of the internal system, which we refer to as the controller.They are often obscured and potentially more dangerous since they can unexpectedlycontribute to dramatic external accidents. Distributed systems, where there is aconuence of more than one stream of data, may be particularly prone to such faults.The preparation of a dinner in a hotel kitchen is a distributed system consistingof a number of cooks, each attending to individual dishes: they exercise their ownquintessential culinary �nesse, but have to co-operate towards a common gastronomicgoal, sharing the sinks, the cooking utensils etc ... its smooth operation requires acollective understanding of each individual's role.Applications in the medical sector are numerous: an indication of the extent ofthe coverage is given in a special issue of IEEE Computing and control [Fel95] in whichthere are articles on Computerised conformal radiation therapy; a medical imaging systemin diagnostic microscopy; a communication system for wheelchair-mounted medical robots;medical robotics itself; and programmable electronic medical systems. Other applicationsinclude medical administration { database systems of various sizes, and amongst the moreambitious projects are those concerned with the application of virtual reality for remotesurgery.2.3.2 Observations on software within the System settingIn summary, in the safety-related system as a whole, the methods employed startwith hazard identi�cation and proceed through to risk assessments. Then the requiredsafety integrity may be determined and carried out together with subsequent assurance ofthis integrity. In systems which have safety-related software and especially safety-critical

27software, this assurance is di�cult, almost impossible, to provide as we've already indicated,though it can be revealed when a system has insu�cient integrity.In order that the design process may ful�l all the requirements to the appropriatesafety integrity level, a suitable combination of scienti�c, engineering and managementpractices may be applied. For instance, management can ensure that scientists and engineerswork harmoniously towards a practical goal, within the current social, economic and politicalclimate. Most of these will also be needed to assure standards authorities that the systemmay be certi�ed as safe. A safety lifecycle model provides an appropriate coherent focus inwhich to make this a more realistic proposition.2.4 Formal Methods for Safety-critical systemsIn this section we show the need for the use of formal methods, providing someinformal de�nitions of the main concepts.2.4.1 Motivation for their useProviding high integrity systems with embedded software requires a careful ar-gument for its justi�cation. Demonstrating such exacting requirements through su�cientstatistical evidence based on testing and other general reliability measures has been shownto be doubtful. Thus, some other kinds of arguments have to be written, which must beprecise { in language that is well-de�ned, whose meaning is clear, and with the ability toprove statements without doubt. Since natural language is unable to ful�l such demands,the only possible solution is to use a mathematical approach { formal methods.A formal approach is ideal for veri�cation, the activity guaranteeing correctness,i.e. (to paraphrase) that we are building the system right and particularly that successivere�nements of a speci�cation are consistent with each other. More than that, the disciplinewhich they encourage often leads to a more careful analysis of the most basic assumptionsand de�nitions in the design, a bene�t which is often understated. In particular, they maypoint to ambiguities in the requirements de�nition. Formal methods is thus e�ective forvalidation { making sure that we are building the right system.Unfortunately they also have their costs, but the obstacles to their use are beingovercome: publications such as [BS93b, Tho93a, HB95] indicate the progress that has beenmade. As these formal procedures have only been applied recently, at the moment theirdeployment needs to be carefully targeted. The case for formal methods increases as strin-gency on the failure rate increases. A 'modest' failure rate may be achieved by standard

28software engineering, where techniques such as product testing and case analysis may suf-�ce, whereas for stricter failure rates, such analysis is insu�cient and perhaps only formalmethods will do. They are particularly suited to requirements analysis where the stakes areexceedingly high in terms of the development of reliable safety-critical software [Bye92].2.4.2 De�nitionFormal methods may be de�ned as a branch of discrete mathematics which dealswith the logical analysis of forms and their semantics (meaning), with a speci�c applicationdomain being computing. They usually consist of two parts:1. a formal calculus (or formal system) which is a symbolic system in which are de�nedaxioms, having some denotation as formulae; a precise syntax that de�nes how theaxioms may be put together; and relations that enable the deduction of propertiespurely as the conclusion of arguments that are valid through the system's syntax.2. a formal language is a formal calculus which has also an interpretation of the formulae{ semantics. Further rules constrain what constitute valid (meaningful) formulae andthe properties that may be deduced. A given calculus may have in�nitely manyinterpretations.The fruits of the �rst part are propositions and theorems which express propertiesabout the formulae. The second part generates the same kind of results, but also allowsthe more liberal view that formal methods may be regarded as a mathematical approachto reason about any system, be it an industrial factory or an abstract machine. The mathe-matical disciplines used are based on set theory, predicate logic and algebra; the 'methods'in formal methods are techniques related to these disciplines.This is rather a contrast with the usual conotation of 'methods' in industry, whichare procedures to generate working products. As many authors have pointed out, the generallack of such an industrial view, has proved a great stumbling block [Bri92]. This providesour motivation for examining procedures to support the formal approach for integrationinto a working methodology. As a start, we conceive the part played by formal methods insoftware development as illustrated in Figure 2.3, which ful�ls the two kinds of requirementsexpressed in section 2.2.2. First the envisaged system is conceptualised in terms of broadrequirements, whence we may translate it into some formal unambiguous representation {an abstract model. We then employ mathematics to analyse and reason about our systemthrough the model, establishing the model's validity.

29
Validation

More Reqm’ts

Validation

More Reqm’ts

Refined SpecSpecificationSpecification

Analysis

Requirements

Refined Spec

AnalysisAnalysis

Total Reqm’ts

implementation

Validation

ProductProductProduct

Physical
World

Abstract
World

SYSTEM

FORMAL METHODS

capture
to formal
specification

Figure 2.3: Formal Methods: capture, analysis and re�nement in Software DevelopmentWhen this is achieved satisfactorily, the subsequent development consists of succes-sively re�ning the model towards physical implementation in such a way that it is consistentwith the chosen formal notions of re�nement. It is necessary to verify that the steps aremade in a manner that preserves the required functionality and properties according to thesenotions. In Figure 2.3, veri�cation is performed in the Abstract World and is denotedexplicitly by Analysis (for checking internal consistency) and implicitly in the rightwardarrows (for checking consistency of successive speci�cations).The traditional role of validation in engineering is, typically, to check that a prod-uct or implementation meets its requirements. This may be extended in the software settingby taking the view that validation is the process of showing that we are build-ing the rightsystem. An incremental view is particularly pertinent in the formal setting where math-ematical relations relate initial incomplete or abstract models with subsequent complete'implementations'. To clarify, we can use the term 'model validation' for a model that isbeing re�ned toward a product, and when this is understood, we talk simply of 'validation'.Figure 2.3 reects this view.Thus validation may be considered as a repeated process of interpreting require-ments in the Physical World, capturing this formally (indicated by the upward arrows)and then checking and analysing (in the Abstract World). The process continues for suc-cessively more requirements as the design possesses larger scale and/or �ner details. Themodel may thus be seen to evolve in the abstract setting, dependent upon the real-world

30setting. Working in this fashion should lead smoothly towards a �nished product.For this to be well grounded, regarding the veri�cation we require a priori thatthe formal system itself is sound (or consistent), i.e. that it does not enable the deductionof a contradiction from the axioms. For the validation, we require that the formal systemenables that any model that is valid to be demonstrated as such. This is the property ofcompleteness: a formal system is complete if every (semantically) valid formula can be proved(syntactically) from the axioms. Sound and complete formal systems are kinds of assurancein that they guarantee proofs, at least in theory. If proofs are conducted in systems whichhave not been shown to have these properties, then some additional justi�cation would berequired.Alternatively, the process of re�nement may be considered in terms of successivelyreducing the size of a set of valid implementations: as the requirements increase, the familyof valid systems decreases.2.4.3 Formal analogues of safety-related aspectsTackling safety from a general engineering perspective led us to considering haz-ards and risks. In our mathematical treatment, the corresponding conditions that have animportant bearing on safety are expressed in terms of certain kinds of properties. Mappingsafety engineering concepts to the formal domain raises a number of issues, especially thatof expressiveness of the respective formalism, discussed in the next chapter. Here, we giveonly an indication of their potential.We start o� by citing some of the formal meanings of some safety-related proper-ties. Below is a simple classi�cation into two kinds with respect to temporality { safety andliveness, properties that were originally de�ned for multiprocess programs in [Lam77]. Wequote the de�nition of [BA90]) and then give some typical examples:� safety property: The property must always be true.� liveness property: The property must eventually be true.The �rst de�nition is really an invariant, and does not convey the sense of pro-tection from loss or injury. The most common example of a safety property which conveysa more familiar meaning is \something 'bad' never happens", where 'bad' has a formal in-terpretation, reecting some common sense view of hazards or accidents. Things \happen"when certain actions or events occur. Thus, one safety property may be expressed as: there

31is always absence of deadlock (the state where no actions are possible), which may be re-garded as a kind of service omission. More subtle is absence of livelock (the state where nouseful actions are possible) which may also be regarded as a service omission. An importantinstance of livelock is divergence in which a component gets caught up in an in�nite internalloop. One example of liveness is fairness { some event(s) must occur eventually, perhapsprecisely when certain other processes have reached certain states, or, more loosely, onbeing available in�nitely often. Such liveness may also be expressed by \there is alwayssome action or event which the system may perform to usefully evolve."Many safety requirements make reference to time: for example, a hazard wouldbe created if an oxygen mask slipped o� a patient in an ICU, in which case the crucialrequirement is that a nurse will be alerted in time to replace it. The issue of handling timein a formal manner is a philosophical problem, for which a prime concern is the question:at what stage in development should time be mentioned explicitly? In our example, it isof paramount importance that the network has integrity, i.e. that the correct sequenceof actions is carried out with su�cient urgency. In practice, a well designed network willcorrectly transmit an alarm signal in a split-second. The real di�culty may lie in ensuringthat the signal actually gets transmitted and that it doesn't get thwarted by livelock. On theother hand, the implementation may well perform actions to synchronise with the tickingof a global clock.An overview of most of the formalisms that have been used for the analysis ofsafety-critical systems with real-time aspects has been given in [Ost92]. The survey providesa broad classi�cation into three main directions, reecting successively greater formality:the �rst is a brief look at real-time programming languages such as ADA and OCCAM;the second considers structured methods and graphical languages such as STATECHARTS;and the third, the largest, examines logics and algebras. It is by no means complete, but auseful reference source nevertheless.2.5 Introduction to main formalisms used in thesisIn this section we introduce some formal notations to illustrate their ability tomodel behaviour and capture certain properties, particularly safety and livenesss. In viewof our Flexport case study, we do this for concurrent systems and employ a dual languageframework of process algebras for developing system models and temporal logic for speci-fying requirements.

322.5.1 Transition Systems and Labelled Transition SystemsTransition systems are especially suitable for modelling the operational semanticsof systems (both plant and controller). They are ideal as a basis for the logical analysisfor safety-critical properties { the modal and temporal properties to be treated later. Weintroduce some notation and de�nitions, generally following [Sti92b] to illustrate the typeof reasoning we can perform.De�nition A transition system is a pair T consisting of a non-empty set S and a non-emptyset R of ordered pairs (si; sj) with si and sj both in S.S is a set of states, and R is a set of transitions from S to S. To model systems,and in particular their internal actions, we require more information to be speci�ed.Suppose we wish S to represent, for instance, the possible locations and con�gura-tions of a robot on an assembly line. This system is dynamic and has transitions from onestate to another { denoted by the set R. We make explicit the fact that such transitionsare due to actions and introduce L, a set of labels to denote the set of all actions possible inthis system (perhaps containing elements such as 'move left', 'rotate right arm 90o right',... etc). It is now useful to classify the transitions in terms of actions, so we de�ne twotypes of relation (a set of ordered n-tuples) { here an ordered pair, and an ordered triple.(� denotes Cartesian Product).(i) A subset of S � S, denoted by a!, representing those transitions possible for acertain action a 2 L.(ii) A subset of S �L�S, denoted by !, consisting of all possible transitions for thelabelled set L.We now de�ne a labelled transition system using the relation de�ned in (i).De�nition A labelled transition system is a pair T = (S; f a!j a 2 Lg), where S is anon-empty set (of states), L is a non-empty set of labels, and for each a 2 L; a!� S � S.We write s a! s0 if either (s; s0) 2 a! (or if (s; a; s0) 2!).The de�nition leaves open how the structure of S may be represented. They alloweasily for parallel systems to be interpreted on them.

332.5.2 Process AlgebrasTransition systems given as a list o�er few clues as to structure and it is di�cultto follow the ow of transitions. In view of this, languages have been developed to providethese, thereby facilitating reasoning. They include approaches based on Petri Nets [Pet81],one of the �rst formalisms to deal with concurrency. One family of languages that hasevolved with various inuences (including Petri nets) and which has proved very useful isprocess algebra (or process calculi). Examples of process algebra include ACP[BK84, BW90],CSP[Hoa85], and CCS[Mil89].Process algebras are particularly good at expressing the structure of concurrentsystems in terms of simple building blocks { labels and structural combinators (variousoperators). They are able especially to model systems at di�erent descriptive levels. Theoperational meaning (or transitional semantics) of systems is in terms of observable be-haviour on transition systems.2.5.3 LOTOSIn this thesis the language used is LOTOS (Language Of Temporal Ordering Spec-i�cation) [ISO89a], an ISO standard formal language which was developed principally forthe speci�cation of OSI protocols and services { ISO 8807. It has two parts { a processalgebra, referred to as Basic LOTOS, derived largely from CCS and CSP [Hoa85] and a datatype language, based on ACT ONE [EM85], to structure the behaviour in terms of the datawhich passes through system. This rich combination is suitable for distributed systems ingeneral and particularly good at expressing behaviour of communications protocols, so it isa natural choice here. A good tutorial is provided in [BB89].We do not de�ne LOTOS here { please refer to Appendix A, where the transitionsystem with rules is given for LOTOS.2.5.3.1 ExamplesWe provide some simple example speci�cations here which will be used later toillustrate some validation.Suppose we wish to model a householder (Laurel) replacing old gas cannisters, nowempty, with new ones. He has his old cannisters on the doorstep, which he can pick up andthen deposit in the back of the lorry belonging to Hardy, the Gas man. Likewise, Laurelcan pick up new cannisters from the back of the lorry and deposit them on his doorstep.The cannisters are heavy, so that once one is picked up, it must be deposited before another

34one can be moved. We represent Laurel's 4 simple actions of picking up and depositingcannisters (which proceeds ad in�nitum) in the following process:process Replace[collect_old, deposit_old, collect_new, deposit_new] : noexit:=collect_old; deposit_old; Replace[collect_old, deposit_old, collect_new, deposit_new][]collect_new; deposit_new; Replace[collect_old, deposit_old, collect_new, deposit_new]endproc (* Replace *)Suppose Hardy decides to get out of his cab and lend assistance. He agrees tocollect the old cannisters o� Laurel, put them into the back of his lorry and also to collectnew ones and pass them to him.We now model their overall behaviour as two concurrent processes which mustsynchronise their actions in the handover of the cannisters. Their behaviour is identical, sowe de�ne one process, 'Transfer' which represents the behaviour of receiving from one sideand passing to the other:process Transfer[rec_l, send_r, rec_r, send_l] : noexit :=rec_l; send_r; Transfer[rec_l, send_r, rec_r, send_l][]rec_r; send_l; Transfer[rec_l, send_r, rec_r, send_l]endproc (* Transfer *)We then synchronise their individual actions { on Laurel's depositing of old cansand Hardy's passing on of new ones { and use process instantiation. This behaviour, denotedby GAS, say, is represented in the following LOTOS expression:Transfer[Laurel_collects_old, deposit_old, collect_new, Laurel_deposits_new]|[deposit_old,collect_new]|Transfer[deposit_old, Hardy_deposits_old, Hardy_collects_new, collect_new]This can then be considered as a prototype design for the transfer of gas cannisters,but does it work reliably ...? In the next section we analyse the system drawing in safety-related aspects to perform validation using logical analysis.2.5.4 Modal and Temporal LogicsModal and temporal logics are structural languages dealing with propositions offormulae at given states, interpreted on transition systems. A large body of theory has

35been built up for these languages, dealing e.g. with soundness and completeness, enablingexpressive reasoning about properties of transition systems in general. Applying this theorycan reveal information about particular transition systems.Modal logics focus on actions which provoke change, and represent well local be-haviour { good for modelling properties such as capability.Temporal logics focus on resulting states, and the ongoing nature of systems,suitable for global behaviour { good for modelling properties of overall liveness and safety.In the next subsections, we introduce modal and temporal logics in order to expresssome safety requirements, speci�cally for the 'Gas cans' example. A detailed guide to thissubject is provided in [Sti92a].2.5.4.1 Modal LogicsModal logic provides a system for discriminating between processes in terms oflocal capabilities. Formulae are used as the basis for the testing and are assigned a valuationfor each state. So, typically, if we know whether or not a formula holds at a given state,then we assign a valuation of either true (tt) or false (ff).The formulae are built up inductively according to an abstract syntax de�nition,by some union of formulae and pre�xing using members of a set of labels - such as [a] (\boxa") and <a> (\diamond a"). The following is taken from [Sti92b], itself being a slightgeneralisation of Hennessy-Milner logic [HM85].� := tt j ff j �1 _ �2 j �1 ^ �2 j [K]� j <K> �Here, K denotes a set of labels. For a set containing a single element, feg, wewrite just e.Thus a formula is either true (tt); false (ff); a conjunction (\and") of formulae�1 ^ �2; a disjunction (\or") of formulae �1 _ �2; or a modalised formula [K]�, <K> �.2.5.4.2 Modal Logic for ProcessesIn a process algebra, we've seen that processes evolve through actions accordingto transition rules: recall g;P 0 g!P 0 is the rule that allows a process to evolve to behavinglike process P 0 after a transition g. We can relate modal logic to processes by regardingthe labels as actions and the modal formulae as interpreted on states of a given process P ,which we henceforth identify with behaviour expressions. Each action takes us to a new

36process. We relate processes to each other through de�nitional equality: P def= g;P 0 meansthat P has initial action g and then behaves as P 0.To relate formulae to processes, we can de�ne a valuation for formulae on states:we denote by P j= � the property that P has (or satis�es) �. The satisfaction relation j=between formulae and processes is done inductively on the structure of the formulae:P j= ttP j== ffP j= �1 ^ �2 i� P j= �1 and P j= �2P j= �1 _ �2 i� P j= �1 or P j= �2P j= [K]� i� 8Q 2 fP 0jP a! P 0 and a 2 Kg. Q j= �P j= <K> � i� 9Q 2 fP 0jP a! P 0 and a 2 Kg. Q j= �InterpretationEvery process has (axiomatically) the property true (tt), whereas no process hasthe property false (ff).A process has the property �1 ^ �2 if and only if ('i�') it has both properties �1and �2; it satis�es �1 _ �2 if and only if it satis�es (at least) one of these components.We assign meanings of the modalised formulae, with respect to the transitionalbehaviour of processes. The modal operators `[]` and `<>` express necessity and capability.Thus P has the property [K]� if after every performance of any action in K each resultantprocess has �; <K> � has the property that there is some event in K such that the resultantprocess satis�es �.The two inductive de�nitions above allow us to express local behaviour of processesusing modal formulae.Some Properties for Gas cans exampleLet A denote the set of actions available to a process, and let {K be the set con-sisting of the set A less the actions in K. Then for GAS, we have the following formalisationof a safety property:� absence of deadlock may be expressed by GAS j=< A >tt.(On the other hand, deadlock may be expressed by GAS j= [A]ff).We can express some simple liveness properties, stipulating sequences of actionsthat should be possible. The initial behaviour R, say, of the process 'replace', having thecapability of collecting either the old or new cannisters, is expressed by:

37R j=< collect old; collect new > ttThe necessity that immediately after collecting an old cannister, it must then bedeposited is expressed by:R j= [collect old](< deposit old > tt ^ [�deposit old]ff)Some approaches to and issues concerning the validation of these properties for aparticular process de�nition are treated in a later section.2.5.4.3 Temporal LogicsTemporal logic provides a system for demonstrating various safety properties.There are many temporal logics, in each of which safety, liveness etc. may be charac-terised. A recent paper that illustrates the formalisation of many such properties is [Sis94].In our case, to be consistent, a temporal logic is formed by extending the modal logic aboveby the introduction of just one type of operator which captures appropriately the need forpersistence of modal properties. This is the �xed-point operator.De�nitional equality (def=) can be used to describe properties as well as processes.A process de�nition for an endlessly dripping tap might look like:T def= splash;T .The property of persistently being able to 'splash', as satis�ed by this process,may be de�ned by a temporal equation:Z def=< splash > Z.Here Z is a propositional variable, which can have as values a number of solutions,each expressing various properties, though all saying something about the capability of'splash'ing. This is a recursive equation - the Z in the right hand side has also, by de�nition,solutions satis�ed by < splash > Z and so on ...Such equations can be valid for a whole host of di�erent process de�nitions. So-lutions to them are sets called �xed points. It may be shown that there exists both a leastset �Z and a largest set �Z of �xed points: it is these two sets which are especially usefulin the modelling of ongoing safety-related properties.This extra concept is added to the modal logic to produce a modal � calculusde�ned inductively by:� := tt j ff j �1 _ �2 j �1 ^ �2 j [K]� j <K> � j �Z:� j �Z:�

38Safety can now be expressed as a persistent property that some bad state is neverreached. Suppose :� is only true at bad states then safety is expressed as:�Z:� ^ [A]Zi.e., the current state is good (� holds) and any action will lead to the sameequation { the Z in the right handside is a bound variable.All the modal properties above, which held in the local setting, can now be madeongoing using the �xed point operators. Hence we can apply this to our parallel system,GAS, requiring as a safety property that there is ongoing absence of deadlock:GAS j= �Z: < A > tt ^ [A]ZA liveness property we seek is that eventually Laurel has to deposit a new can onhis doorstep:GAS j= �Z:(< Laurel deposits new > tt ^ [�Laurel deposits new]ff) _ [A]Zwhere A = fLaurel deposits new; Laurel deposits old; Laurel collects new; Laurel collects oldg,Hardy deposits new;Hardy deposits old;Hardy collects new;Hardy collects oldg.2.6 Formal Validation and Veri�cationIn this section we discuss some approaches to the validation and veri�cation ofmodels, addressing some of the issues raised in the medical examples and then concludingwith an examination of the 'Gas cans' as an illustration. Veri�cation and validation activi-ties usually involve tackling speci�c tasks with a selection of techniques. These tasks shouldbe understood to operate within a wider framework of re�nement such as that given in thenext chapter.Given an initial speci�cation (or model) M0 of the system, we need to validate it,i.e. check that it satis�es requirements, e.g., contains the essential sets of traces (sequencesof events), has the appropriate responsiveness etc. Typically, a large class of speci�ca-tions will satisfy the requirements, exhibiting the desired functionality and non-functionalrequirements. Where these requirements have been formalised, then depending upon theformalisms employed for the model and requirements respectively, we may proceed to at-tempt a proof. In earlier sections we have seen that non-functional properties, such as

39safety, may be formulated in the modal and temporal logics and interpreted on the transi-tions system speci�ed by process algebra, so we need systematic ways of showing whetheror not such properties hold.Bearing in mind the `Safety Requirements Speci�cation' in the Safety LifecycleModel, we need to ensure that what was originally intended in the requirements is main-tained subsequently. If a certain speci�cation has been shown to satisfy the requirements,then further re�nements, if they are consistent and complete, will preserve these require-ments. Although there may be more granularity or detail and some change in shape, thestructure is in some sense either equivalent or a containment. By following the developmentcycle given in Figure 2.3, we may attempt to re�ne a model stepwise towards implementationin some such manner, verifying each step.The next subsections outline some notions of consistency and approaches to car-rying out proofs for validation and veri�cation.2.6.1 Notions of consistency between modelsIn order that formal representations may be deemed consistent with each otherthere must be a relation that compares them. Such relations may be symmetric or asym-metric. Regarding symmetric relations, an implementation will not usually be exactly thesame as a speci�cation, but if one takes a suitable view, then they may be considered equiv-alent with respect to sharing certain properties that have been abstracted out. Equivalenceis a symmetric relation that can be de�ned in terms of elements belonging to a commonclass C (of objects) belonging to a set S of classes. The view chosen will determine whetheror not processes are equivalent. For instance, a standard toaster and deluxe toaster may bedeemed equivalent modulo (with respect to) a set S of breakfast utensil classes { ftoastingimplement, boiling implement, frying implementg. However, if we are more stringent andde�ne a set S 0 of classes of toasters that reect the level of functionality { temperaturecontrol etc. { then it is likely that the two toasters are not in the same class, i.e. are notequivalent modulo the new set S0.When the speci�cation and implementation are in the same language, then onemay de�ne equational laws which induce equivalence classes. Such laws allow speci�cationsto be gradually re�ned { through a sequence of elements of the same class that preserveperhaps the same observable functionality, but di�er in other respects.For process algebras such as CCS and LOTOS, notions of equivalence are de�nedin terms of behaviour. Di�erent levels of equivalence are de�ned for processes in terms

40of the actions in which they can engage in particular states. A useful equivalence is pro-vided by de�ning a certain binary relation over pairs of behaviour expressions (or agents){ bisimulation, �rst described in [Par80]. The de�nition of these relations depends uponthe notion of observation { some actions, representing those which we can witness or seefrom some viewpoint, are termed observable; others, which are internal to the system, overwhich we have no control, are unobservable. Accordingly, a label set may be partitionedinto observable and unobservable actions.We give below the de�nition for Basic LOTOS (see Appendix A for notation):De�nition A binary relation over behaviour expressions R � B�B is a (weak) bisimulationif for any pair (B1; B2) in R and for any string s of observable actions,1. Whenever B1 s) B01 then for some B02: B2 s) B02 and (B01; B02) 2 R2. Whenever B2 s) B02 then for some B01: B1 s) B01 and (B01; B02) 2 RDe�nition B1 and B2 are observationally equivalent, written B1 � B2, if (B1; B2) 2 R forsome bisimulation R.Informally, bisimulation states that, for any given pair of states in a relation,actions on one side can be mirrored on the other in such a way that after such actions, wearrive at a pair of states which also belong to the relation. This notion was subsequentlyadopted for CCS in [Mil89]. From it we may derive assorted equivalences such as observationequivalence, which we've just de�ned, testing equivalence [NH84] and refusal equivalence[Phi87], many of these notions being mutually alternative characterizations as shown in[Abr87, CH89].Non-symmetric relations can be de�ned naturally from equivalence relations byjust insisting that a relation works in one direction. Amongst such notions is one thattakes just half of a bisimulation, called simulation. Non-symmetric relations are useful inreecting that re�nement is an activity that moves in a direction where, perhaps, detailsmay be added or choices resolved that were left open by the speci�er. Many of theserelations for process algebra are preorders (i.e. reexive and transitive), including traceinclusion [BHR84] and the testing preorder [NH84]. A few other relations, such as conf[Bri87], are not preorders but can also be valuable.Having chosen a suitable relation, whether based on equivalence or some other,one must decide upon appropriate techniques for proving that the relation holds. Since itis usually the case that a whole class of speci�cations are equivalent, say, then methodsemployed are often designed to prove some kind of su�ciency, rather than exact equality.

412.6.2 Methods of ProofApproaches to veri�cation of desired properties or consistency may be classi�edaccording to the extent that they require interactive assistance from the speci�er/designeras reected in the two main approaches to proofs:1. Proof-theoretic (or axiomatic): where speci�cations are written in or translated intothe notation of a proof system in which theorems may be proved using, for example,equational reasoning and term rewriting.This approach is traditionally interactive, with activities that include studying thelaws of a system itself; guiding a tool towards proofs, perhaps updating its proofcapabilities along the way; and checking the validity of one's own hand written proof(proof checking). Included in this category are methods based on deduction wherea veri�cation problem in the given setting is not decidable, or at least no adequatedecision procedure can be devised. In this instance, proofs have to be completed withintervention.A popular example of a theorem proving environment is higher order logic, a form oftyped predicate calculus that can be based on �-calculus. Such logic lends itself wellto mechanisation: one system that has been devised is called Logic of ComputableFunctions (LCF) [GMW79], which in turn has subsequently been used as the basisof a popular tool called HOL[GM93]. Some applications of HOL are featured in aspecial issue of a journal [T.F95].In [MP81] it is proposed that transition system models of programs be coded asa theory � of temporal formulae. Provided that the axiomatisation is sound andcomplete, one can show whether or not a required temporal property holds as aconsequence of �. Hence, the transition system representation gets sidelined in favourof the proof system.Theorem proving can also be used with languages that o�er more structure thantransition systems. A proof theoretic view of process algebra uses equational reasoningin which valid transformations are de�ned via equations as given in [Hen88]. Suchde�nitions allow automation as term rewriting, and this is explored for the veri�cationof LOTOS speci�cations in [Kir94].Properties of systems speci�ed in process algebras have been proved using composi-tional proof methods working with a given notion of equivalence: a system is brokeninto components which are shown to possess certain properties that are together strong

42enough to imply the desired properties of the overall system. For instance, a protocolhas been veri�ed using relativized bisimulation [LM86].Another type of theorem proving uses a (semantic) tableau, a tree diagram constructedin order to check whether or not a set of statements are consistent by successivelybreaking down the given statements into simpler componenets, where the consistencydepends upon obtaining contradictions or otherwise. Tableaux methods may be au-tomated, in which case they underpin model-checking (see below).2. Model-checking (state/process based): A system is 'captured' in some way by amachine representation, perhaps a �nite automaton or possibly an in�nite state ma-chine. Since it is easier to manipulate systems with simple (or very little) structure,a process algebra de�nition is often transformed into an LTS representation that pre-serves a strong form of equivalence. Such a representation is generated by recursivelyapplying the rules for transitional semantics. An algorithm, called a model checker,then can establish automatically and exhaustively whether or not desired propertieshold for this representation (and hence for the original de�nition, if applicable).The initial work that was undertaken into model-checking is covered in [CES86] and[QS81]. Subsequent research and applications have been extensive: in [SW89b], theidea of a CCS process having a temporal property is discussed, supported by a correctmodel checker for the linear time mu-calculus of the general temporal logic. In [Bar95]model checking is performed on a speci�cation of a microprocessor; and employed in[BA91] to gain assurance for a communications protocol of a real-time control systemin the nuclear power industry. For veri�cation, [FST92] presents a case study thatperforms stepwise re�nement of process algebra, using bisimulation as the basis of theequivalence between successive designs.Apart from using model-checking to perform wholesale veri�cation and validationdirectly on the speci�cation, somewhat more implementation-oriented testing maybe used. Testing is dependent upon how the system's behaviour may be observedin its external interaction. Tests may be derived from an initial speci�cation, andthe resulting interaction with the implementation under test (IUT) simulated. Thiso�ers quickly some initial indications of whether an implementation satis�es certainrequirements. The types of tests possible depend upon the language used. This iscovered in detail in chapter 5.There is some overlap in the two approaches above and, indeed, either can beused for the checking of safety properties. Common to both is the need for e�cient use

43of resources such as hardware and time: algorithms should solve decision problems withinreasonable bounds, using modest amounts of storage space. This issue is discussed (formodel-checking) in [FM91, GRRJ89, GH93].2.6.2.1 Simplifying the ComputationThere are methods which are designed to enhance the proof activities above, oftento simplify matters both conceptually and computationally. Two important principles thatunderline many such methods are abstraction and modularity. Thus, if a veri�cation is beingperformed between two designs, then transformations may be performed on the respectiverepresentations to hide superuous detail and decompose the system into more manageablechunks. This may be done such that the consistency between the original objects undercomparison may still be checked. If validation is performed for some property expressed inone language with respect to a model in another, then abstraction may be performed onthe model to yield the desired simpli�cation.There exist a variety of techniques to simplify the task of veri�cation for systems.The techniques available depend upon the relation being checked. For instance, there arevarious methods of abstraction to choose from, of which those based on equivalence arewell established, see e.g.s, [Zui89, Klu91] for ACP. Abstraction to show partial propertiesis conducted using the tool AUTO in [MV92a] where sets of actions are hidden to showsome sequential properties of inputs and outputs to a communications protocol. In [AL89a]there is provided a modular speci�cation method, where a proof rule is given that if compo-nents behave correctly in isolation then they will behave correctly in interaction with othercomponents. Safety and liveness rules are discussed for such modules.Those formalisms that explicitly model time are generally more complex, so ab-straction is even more important in this case. Applications to timed formalisms include[DLG92] that uses a branching time logic RTL where the abstraction takes advantage ofmodularity. Also [Ost94] uses compositional reasoning to verify properties that are ex-pressed in a real-time temporal logic (RTTL).However, it is argued in [BBBC94] that time and abstraction can be conicting,so a dual language framework is presented where behaviour and timing requirements arede�ned respectively as LOTOS processes and speci�cations in a temporal logic, QTL, thatis based on RTTL. In particular it is proposed that to clarify the nature of abstractionfrom implementation details (termed implementation abstraction) there should be a sepa-ration of timing concerns into 3 categories that range from the abstract temporal ordering(functional behaviour) to explicit performance requirements for the implementation. This

44implies that validation in the design cycle should be carried out in stages: early on, the moreabstract temporal requirements for functional behaviour may be validated; later, explicittiming requirements can be checked for a speci�cation in T-LOTOS. This separation maybe incorporated in our model for formal re�nement given in �gure 2.3, where the sequenceof successive requirements can be instantiated to correspond to this classi�cation.In the paper, such a speci�cation is intended to be just a leaf o� the main branchin the re�nement trajectory, which is to remain within the scope of untimed LOTOS. Alter-natively, one could treat the timed speci�cation as some design item in the main re�nementpath, a view which appears natural and necessary if one wishes to avoid discontinuity inthe development. A motive that supports this is the wish to validate the model, not sometransformation of it; the timing requirements themselves may be introduced in stages inparallel with the model's development.Whether or not such a speci�cation forms a central part of the evolving design,there remains the issue of consistency between untimed and timed speci�cations. Thisseems resolvable since in [MFV93], it is shown that T-LOTOS is upwardly compatiblewith LOTOS by de�ning the time domain to be a single element, supported by a fewappropriately de�ned equations.One general approach that is gaining in importance is symbolic veri�cation. Thisencompasses those methods that use symbolic representations of a system for the checking.Its computational advantage arises usually through being able to show proofs for a simplerrepresentation, typically at some level of abstraction that is higher than that for an alter-native representation that does some interpretation that reduces the structure and perhapsdoes some interpretation in the process. In particular, such an approach often proceeds atthe level at which a design is expressed, be it in process algebra or some other symboliclanguage.Symbolic methods may be further enhanced by the use of compact representationssuch as Binary Decision Diagrams (BDD's) which use Boolean expressions to provide con-siderable improvements in the number of states that may be stored. A state of the art forBDD's is given in [Bry95]. One application has been symbolic model checking in which asystem is checked without interpreting any of the variables, using BDD representations ofa version of the ��calculus [BCM+92]. The e�cient generation of such representations ispresented respectively for CCS in [EFT91] and LOTOS in [Sis95], in particular they presenta BDD encoding of transition systems. Note that in the case that the variables are de�nedon in�nite domains, then the generated transition system would be in�nite, so symbolicveri�cation appears exceedingly useful here.

45An important and typical context for abstraction is re�nement: for instance, actionre�nement (replacing actions in a speci�cation at a higher level of abstraction by processesof more concrete actions at a lower level of abstraction) is discussed for LOTOS in [CS93],where an extra re�nement operator is introduced; laws that simplify CCS process termswhilst preserving temporal logic formulae are presented in [Bru93]. (A related task isprocess re�nement (the re�nement of the substructure of process de�nitions to providemore structure)).More general property preserving maps between LTS are given in [LGS+95] whichuse Galois connections between LTS and function domains with pre/post conditions. Suchabstractions are not based on equivalence. Another technique uses partial orders thatabstract out from independently interleaved sequences and is shown to be computationallye�cient [GW91].Some recent work seeks to utilise symbolic methods in a project that combinestheorem proving and model checking: the hardware description language ELLA[MC93] hasbeen given formal semantics based on enriching automata and is in turn contained in amore general framework calculus of automata. Within this framework, symbolic veri�ca-tion of bisimulation is performed using a state evolution rule that de�nes a pair of logicalexpressions on abstract deterministic machines, whose structure enables the decompositionof the expressions into a set of �rst order veri�cation conditions [BGMW95].2.6.3 Tool SupportVeri�cations of even moderate size are very labour intensive, so automated assis-tance is highly desirable. A number of the references quoted above used tools to assist inproofs. The tools below are amongst some that are readily available, often public domain,and are well tried and tested. Some of these now employ nice graphical interfaces. Noone tool is comprehensive: useful automated support really requires a collection of tools,possibly several collections. For instance, some tools perform a wide range of veri�cations,but require input of a certain format, necessitating perhaps the use of other tools to performtranslations into this format. The list is far from complete and favours those with minimalintervention from the speci�er, reecting the view in this thesis that such an approach ismore likely to be accepted in industry. For instance, a more interactive approach requiresgreater technical knowledge about formal languages which does not necessarily enhanceunderstanding about the systems under scrutiny.

462.6.3.1 Theorem ProversThere are a number of tools to support this approach such as the Larch Proverfor �rst order logic [GG89] and the Rewrite Rule Laboratory (RRL) [KZ95]. Equationalreasoning needs more interaction as rewrite rules are developed and veri�cations carriedout, but this can lead to a �ne understanding of especially the kinds of assumptions whichwe make as designers. The Larch tool has been used in [CN92] for the veri�cation ofobservation equivalence between two systems.PAM (Process Algebra Manipulator) [Lin91] is a proof assistant that allows theequational laws to be encoded; tactics can be de�ne to provide some automation, but thisis limited. PAM is examined for Basic LOTOS de�nitions in [Kir94]. It has subsequentlybeen re�ned to VPAM [Lin93] to cater for value-passing and uses symbolic methods thatare similar to the work mentioned above on ELLA.2.6.3.2 Model-checking and OthersThe Concurrency Workbench (CWB) [CPS89] is able to check equivalences forCCS processes plus modal and temporal properties. However, earlier versions were limitedin their potential to support other notations since they were unable to accept speci�cationsthat were not written in CCS or its variants. Subsequently, a common �le exchange formathas been de�ned, called FC2 [MdS93], which has enabled the integrated use of a number oftools. The FC2 format enables the CWB to be used more easily in conjuction withthe Lotos Integrated Tool Environment (LITE) [PvEE92] that was produced within theESPRIT Lotosphere project. LITE has functionality that ranges from syntax and semanticscheckers, to graphical G-LOTOS representations and a report generator, which togethersupport well the development of speci�cations in LOTOS. LITE has limited model checking.Nevertheless, as Basic LOTOS is very close to CCS, there are tools which can transformLOTOS speci�cations into CCS, via FC2, e.g. more recent versions of M-AUTO that weredetailed in [MV92b]. Veri�cation of properties of Full LOTOS is generally limited due tothe relative complexity of the language. The only facility available in LITE is a trivialreduction option in AUTO (see also [MV92b]).LITE is stronger in its facilities for testing. One of its tools is LOLA [QPF89, Lla91]which provides for state exploration and test expansion facilities and has been used inthe validation of communication protocols [CG93]. Another tool, SMILE [EW93], allowsanalysis of behaviour and ADTs through simulation performed using symbolic execution

47event by event. However, such tools are generally insu�cient for full formal veri�cation.However, another toolset, CADP, provides rather more facilities for veri�cation.It consists of a pair of compilers C�SAR and C�SAR.ADT which translate a large subsetof Full LOTOS to labelled transition systems [FGM+92] plus a model-checker, Ald�ebaran[Fer88] which can check for various preorder and equivalence relations using methods thatuse symbolic representations. There is also implemented an algorithm that generates modelsthat are minimal with respect to strong and weak bisimulation. This tool also uses variousenumerative veri�cation methods, including some based upon the use of abstraction criteriathat enable compositional reasoning. The CADP tools were employed in [Mou91] for theveri�cation that an algorithm met the requirements for a reliable multicast protocol. Thispaper highlights how state explosion is revealed as a problem that can be beyond thecomputational abilities of a tool, thereby necessitating hand proofs. However, on furtherunderstanding of the system and the modelling language (LOTOS), su�cient proofs couldbe generated by hand with useful machine assistance.Other tools for process algebras include: ARA [VS95] which has a way of vi-sualising global properties of speci�cations (using LTS) { showing, for example, deadlockdetection. This is dependent upon the computability of graph { techniques used for increas-ing e�ciency include abstraction and decomposition, which do not need any special promptfrom the speci�er.Some recent projects have moved towards providing tools that integrate variousapproaches: for example, PVS (Prototype Veri�cation System) integrates theorem provingand model checking [ORR+96].2.6.4 Validation IssuesIn this section we briey illustrate some concepts and tool application to the 'Gascans' example.Recall we wished to check that the speci�cation does not deadlock. This is formu-lated as: GAS j= �Z: < A > tt ^ [A]ZSuch a check may be carried out in a tool like CWB, but a quick simulation inSMILE reveals deadlock after just a few transitions: Laurel and Hardy move the cannisterswithout hindrance until they both decide to pick up from their respective ends (representedby a sequence Laurel_collects; Hardy_collects or vice versa). They meet each other

48halfway down the garden path; according to our speci�cation, they can only proceed byhanding over their cannister, but the other person can't receive because they have theirhands full { this is deadlock! Thus, some desired properties may often be shown not to holdby simple means, whilst showing that they do may require more e�ort.Of course, in real-life this problem may be easily resolved ad hoc by a varietyof ways, analogous to program 'debugging'. Unfortunately, speci�ers of a safety criticalsystem don't have recourse to this { they cannot a�ord to wait until the testing stage fordesign errors to be uncovered. Great care is required to ensure through formal analysis thenecessary ongoing capability of events to be performed. (A solution to this is given in theAppendix).This problem is essentially the same as one for CCS expressed in terms of com-munication bu�ers in Chapter 1 of [Mil89]. This is a tiny example, but it is just this kindof problem which lies at the heart of large and complex distributed systems.We may use abstraction in the 'Gas cans' example by looking only for indicationsthat everything is proceeding OK, viz that Laurel is collecting old cans, depositing newcans; Hardy collecting new cans and depositing old cans. i.e. we wish to abstract from theexchange process { do this in LOTOS using the hide operator.hide deposit_old, collect_new inTransfer[Laurel_collects_old, deposit_old, collect_new, Laurel_deposits_new]|[deposit_old,collect_new]|Transfer[deposit_old, Hardy_deposits_old, Hardy_collects_new, collect_new]2.7 Medical ExamplesWe provide a quick review of the use of formal methods for medical applications.These are rather sparse. The use of semi-formal methods such as functional programmingare not listed, though it is worth mentioning a paper that reports the use of functionalprogramming in (subjective) preference to Z for medical diagnostics, a project that wascarried out under a strong safety-critical methodology that used techniques such as HAZOP,FMECA, and risk assessment [CBM+95].Here are some of the projects:1. Hewlett-Packard Laboratories carried out a couple of projects which involved formalnotation { the formal notation HP-SL [Bea91] was used in the development of bed-

49side instruments to monitor vital signs [LF91]; and the speci�cation of input{outputrelationships over time for some safety-critical code on ROM [CBH91]2. An appraisal of the use of Z to specify a family of instrumentation systems that wascarried out around 1990 at Tektronix Corporation is given in [GD95]. It illustrateshow formal methods may be scaled.3. More recently, Z has been used in the speci�cation of a control system for a clinicalcyclotron [Jac93].4. As computers play an ever increasing role in patient healthcare, the need for standardsincreases. Formal methods have been shown to enhance the quality of an internationalstandard for medical device communications in [NC96, CNS96] (discussed below).5. Another application of formal methods has been to analyse one of the most notorioussoftware-related disasters in the medical sector { that of the series of Therac radiationtherapy machines, of which one model (number 25) had software design errors thatresulted in fatalities [Tho94, Kir95].A noticeable feature of these projects is that the use of formal methods requiredthe special support of management to go ahead; when this is not available, or lapses, thenprojects involving formal methods seem to fall away { as seems the case in the �rst two cases.However, work is ongoing in the use of formal methods for medical device communications,discussed next.2.7.1 Medical Communications: background to FlexportEmbedded computer systems are increasingly common in intensive care environ-ments where numerous medical devices are used to monitor patients' life signs and maintainessential physiological functions. Such distributed systems are dependent upon communica-tion protocols. During the past few years, a signi�cant development has been the emergenceof a new international standard for Medical Device Communications, the IEEE 1073 MedicalInformation Bus (or MIB) ([Ins92, Ins94a, Ins94b] which is based on the existing ISO OSI7 layer reference model for Open Systems Interconnection [Int84]. Introductory material tothese standards is given in [GTHE89, Sha89, SW90].The IEEE standard provides rules and guidelines for the connection of medicaldevices and host computers specialised for the intensive care environment. The major goalis the integration of all medical devices through "plug and play" where each component is

50able to slot into a network without problems of compatibility and then communicate withother components according to the rules of the MIB. For hospitals, this will then enable withcon�dence the complete integration of all devices needed in their intensive care network,without being limited to proprietary systems. Through the exibility of 'plug and play',medical sta� will be able to choose from assorted manufacturers the best of each type ofdevice, and so provide better care to patients.Manufacturers will naturally be obliged to produce equipment which conforms tothe standard. They will need to provide assurance that their products do indeed conformto the standard, especially the implicit safety requirements, hence the need for reliable soft-ware engineering techniques and the suitability of using formal methods. There is extensiveliterature on the application of formal methods to the analysis and design of communica-tions protocols, see e.g.s [LM86, AL89b]. Further, its scope has been quite wide-ranging:[AHJJ93, ASvS89] and has even reached some reached some maturity [KvdLRS93]. How-ever, like formal methods in other areas, its application in industry has been sparse, notgenerally integrated with safety analysis techniques, and there are especially few in themedical arena.In this thesis, industry standard protocols are being used as the basis for investi-gating the application of formal methods to ensuring the overall safety of communicationssystems. Particular attention is being given to Flexport, a patented protocol (c) SpaceLabsInc. for connecting a third party device [SpaceLabs89]. SpaceLabs is a leading developer ofmedical devices. The protocol will serve as a testbed for the methodology and techniquesdeveloped.The research has been closely involved with the 'Medical Software EngineeringGroup' (MSEG), a multi-disciplinary research group with members from the Departmentof Biomedical Engineering at the Royal Brompton Hospital, The Department of MedicalComputing and Informatics at the Royal Free Hospital School of Medicine as well as theSchool of CSES at Kingston University. The group consists of researchers in the areas ofComputer Science, Biomedical Engineering and Electronics, some of whom have been onthe balloting committee of the MIB. Associated work includes the generation of suitableprototypes for medical systems including the MIB. This has resulted in some papers thatdeal with veri�cation: theorem proving is employed to examine the consistency of theMIB's data link layer of the MIB [CN92] through two views (intensional and extensional);and validation: it is shown how the con�dence in such a standard may be enhanced throughthe speci�cation of properties in temporal logic and their validation using model checking(in CWB) [NC96, CNS96].

512.8 ConclusionsIn this chapter we have introduced the use of formal methods for safety criti-cal systems, which started with a general systems safety view as regarded in engineeringand successively focused on the safety aspects for software, leading to the Safety Lifecyclefor software development. Within this traditional framework, we have developed explic-itly the mathematics which appears to have the protential for analysing safety, expressingrequirements and subsequently implementing systems. Due the vastness of the area, wehave concentrated on concurrent systems and a particular twofold approach, using processalgebra, viz LOTOS, and modal and temporal logics. It is a path which is chosen forits suitability for analysing the case study of the Flexport communications protocol to betreated later on in the thesis.

52Chapter 3A Framework for the Safety-oriented FormalRe�nement of Systems3.1 IntroductionIn this chapter we are concerned with providing e�ective support for the re�nementof formal models of safety-critical systems, which are intended to be developed towardseventual implementation. We investigate an approach that takes as its central perspectivethe use of formal methods since formal objects are to be the principal design items. Asupporting framework is proposed that is based upon engineering principles, held togetherby close reference to the safety lifecycle model.If formal methods are to be used primarily for the activity of generating safetyrequirements, then one may advocate (as in [dLSA95]) that formal methods be 'mixed in'with other approaches. However, here we are engaged in modelling and re�nement activities,for which we suggest that greater emphasis be placed on the formal approach, which therebybecomes the 'main ingredient' that deserves special attention. The discussion is augmentedby consideration of risk management to keep the focus on safety and of Con�gurationManagement to maintain the smooth development of software items.In order to motivate the discussion, we start by taking a closer look at the uptakeof formal methods in industry.3.2 Appraisal of Safety-critical systems and Formal Meth-odsIt has been widely recognised that formal methods can play an important role inthe production of safety critical systems, so what has the uptake been like?

53Through the development of tools, formal methods have been applied on a largerscale. Indeed, their use for safety-critical systems has reached some maturity: articles suchas [BS93a, CGR95, PA94] show how industry has not only recognised them as important,but also started investing in these methods, a situation re-inforced by the recent publicationof a book [HB95]. However, the overall sentiment seems to be cautious and there are stillmisconceptions [BH95]. Closer inspection reveals that the application of formal methods toindustrial examples has generally been sporadic [VvSP93] and in a rather static manner,sometimes viewed like 'plug-in' technology which, analogous to the comment about software'�xes' (section 2.2.4), renders their use much less e�ective.To discover more why this is the case, we choose to focus our attention on aspeci�c area { communications, on which large systems in general are becoming increasinglydependent. Although this is not con�ned to safety-critical systems, its investigation revealsimportant clues.There are substantial examples of using a formal description technique to specifycomplex communications systems, o�ering various insights into requirements for correctdesign. However, this has usually been conducted as some initial activity, rather separatedfrom the main software construction. The analysis has often been rather modest { perhapsconsisting of simulation and testing of the resulting large structure for certain selectivebehaviour, thereby proving just partial properties. Where greater rigour has been applied,the examples or case studies that have been chosen have usually been small and requiredad hoc proofs by hand which, notwithstanding the issue of whether or not they may bescalable to larger systems, is a deterrent to all but specialists in formal methods.It is arguable that the formal approach has yet to achieve its potential in anyindustrial area, for it has only been recently considered what are e�ective design methodsemploying formal notations to generate working products, as highlighted in [Bri92]. Forconcurrent systems, designers have commonly adopted process algebra or other formalismssuch as SDL[Z.192] and ESTELLE[ISO89b] that are based on transition systems since theyare supported, as we have seen, by some powerful tools. However, much less has been doneor made publicly available on methods to manage projects in which formal methods play acentral role { papers such as [Pen91] have o�ered only interesting glimpses.One of the few projects that has made a substantial visible contribution (regardingthe use of LOTOS) has been the Lotosphere consortium, which devised a tool-supportedmethodology to support the formal development of large systems [LOT92b, LOT92c], sum-marised as a book in [BvdLV95]. Even so, the methodology described therein assumes thatonly weak validation may be performed, through selective testing { which is inadequate to

54show safety. Further, the central design activity of re�nement remains little researched out-side of broad considerations, though some literature is available and should increase as theresults of one or two projects emerge [Bru94, For94, SBD95]. More general issues of mak-ing changes to formal speci�cations have also only been sparsely addressed [Kuh92, BW94].Such incompleteness, especially as regards the stepwise development and validation, reducesconsiderably the impact of formal methods.The use of formal methods for safety-critical systems presents a particularly 'hitor miss' picture. This is probably because, as highlighted earlier, it is di�cult to ascertainwhat constitutes justi�able assurance of safety and dependability in relation to the softwarecontext. The safety lifecycle model helps, but there remains much hesitation (and so debate)regarding the role formal methods should play. One reason for this is that little has beendone to provide a place for formal methods within systematic safety analysis as part ofthe software development. Where formal methods have been used for developing safety-critical systems, there has usually been little coherence, this being particularly the case inacademic research, where the original motivation for a formal treatment of safety can belost in theoretical niceties. As an illustration of the shortcomings, it sometimes appearsin conference publications devoted to formal methods that safety-related properties havebeen discovered arbitrarily, even though there has been a real case study at hand. Thisoften arises since the (formal) design cycle was not based around the provision of safetyas required by users, so there was no inherent view of safety. Consequently, formal safety-related requirements have often been considered ad hoc, and post hoc (in retrospect).3.3 Strategies for a coherent approachA general overview for safety-based development of systems with embedded soft-ware has been presented in [Lev86, Lev91], which integrates many of the industrial safetytechniques into the framework for producing safety-related software. In this and other sim-ilar papers, formal methods are part of the consideration, with valid talk of the need fortheir selective use, but a systematic framework that de�nes the role of formal methods isnot made explicit. Even though some of the support for safety analysis has been expressedformally, there is little available on how, for instance, notions of hazards and risks a�ectformal models and designs themselves.The provision of assurance needs to address at the outset systems safety analy-sis and safety-related requirements, and then follow this through the entire development.Hence, if formal methods are used, it is preferable to capture the analysis and requirements

55formally. The formal development should also be properly documented to constitute partof the safety case, which is integral to the assurance for a coherent whole. Only when itcan be shown that safety arguments can echo through the formal model, and subsequentlyin code, can they be properly justi�ed. The ability to follow any arguments contributing tothe justi�cation is called traceability, which requires a wide framework in order to supportthe production of safety cases. Such support for software in general has been provided in[FJMP94, McD94], but this is only semi-formal, and does not speci�cally cater for formalmodels. Indeed, apart from the work mentioned below, there appears to be little in theway of guidelines for recording the speci�cations, their relationships and any other formallyrelated material: the tacit assumption is that they can be treated like any other designobject. In response, there has been some work that provides a formal analysis of safetyrequirements. In [SdLA95, dLSA95], there is the application of formal methods to the anal-ysis of the requirements for systems in general, and process control system, in particular.The work, which has steadily re�ned earlier research [dLSA91], is �rmly rooted in systemsafety practices: it provides a common formal basis for the safety analyses and requirementsthrough an Event/Action model for reactive systems, based on Petri nets [Pet81]. Thesepapers also provide traceability of speci�cations in the form of safety speci�cation graphs(SSG). These graphs record links that range from the accidents through to the speci�ca-tions generated by the requirements analysis, and also allow the formal de�nition of logicalrelationships between these objects. A structure is provided that is generated according toa means of abstraction, namely decomposition: in the SSG, accidents lead on successivelyto hazards, safety constraints (which negate the hazards), safety strategies that maintainthe constraints, interface safety strategies and �nally control system strategies.Qualitative risk analysis may then be employed to analyse the safety speci�cations:preliminary analysis checks for consistency between di�erent levels of the SSG and validationof hazards against accidents, both provided using Event/Action model; vulnerability analysisof the speci�cations is used to identify the circumstances under which the speci�cationis unable to maintain safe behaviour, for which failure analysis is conducted using FTA.This is mentioned as being used \in conjunction with formal analysis", though little otherinformation is given; no procedure is made explicit for linking the two. Finally, it is reportedthat this methodology has been applied to a case study, and found to be particularly e�ectivefor systematic analysis [dLSA94].Another common formal semantic basis for traditional safety analysis techniquesthat is well established is the Common Safety Description Model (CSDM) [BCG91, G�94].

56This work has gone deeper into scrutinising the safety analysis techniques themselves, pro-viding formalisations of FTA and Event Tree analyses. In the process, this work has fre-quently highlighted how the safety analysis techniques themselves can be ambiguous. CSDMis discussed in more detail in the next chapter.Other work on safety analysis has been reported in [CFH95], which has the dis-tinction of integrating formal and informal methods into one methodology. This strategyis growing in favour within software engineering and is called Methods Integration, whosephilosophy is that each technique has its relative merits and that they may be properlyrealised through being anchored in appropriate phases of the development.The paper has a 3 language approach: Ward and Mellor Essential Models [WM85]are used to model in turn the system environment and then the system behaviour; afterthe environmental model is deemed to be su�ciently mature (having satis�ed requirementsgenerated after environmental HAZOP), the behavioural model is constructed and thentranslated into SCCS, a version of CCS that supports true concurrency [Mil89]. The en-vironmental model is used to generate informal requirements for the behavioural model,which are subsequently translated into a branching time temporal logic, whose propertiescan be checked on the SCCS model using the Concurrency Workbench. Note that the paperrefers to this activity as veri�cation, whereas we term it validation. A particular featureof the validation of formalised requirements is the use of local model checking, which usesproof tree analysis that decomposes a formula expressed in logic into simpler componentformulae such that the truth of the original formula holds if and only if every leaf formula istrue [SW89a]. In addition, a process model provides a useful framework in which to conductthese activities, specialised to the context.The paper is mainly concerned with building models for system analysis ratherthan the re�nement of models towards implementation. A drawback of the approach is theextra work involved in using Ward and Mellor as a stepping stone to SCCS representations.It would also be useful if the process model could be related to a general safety lifecyclemodel.3.3.1 Summary and scope for this thesisIn summary, work on safety requirements analysis has been quite thorough andthis has increased the assurance of the dependability of software components. Design cycleshave also been proposed to support these activities. However, less consideration has beengiven to how to relate these requirements to system models as they undergo re�nement

57and the provision of support to ensure that these re�nements continue to have the requiredproperties. This latter consideration also needs a larger lifecycle perspective: as yet, thereis no discussion that makes explicit the needs for formal development in the context of astandard safety lifecycle model.Hence, this thesis has two main thrusts: �rst, it attempts to build on these kindsof approaches, by devoting e�ort to a discussion of the general issues that occur for for-mal development in the context of a safety lifecycle model (�gure 2.2). We analyse (inthis chapter) the lifecycle model and propose modi�cations or elaborations, where deemedappropriate for the formal needs: this is done systematically by examining the respectivestages of this lifecycle (which we denote by enclosing in boxes) for their amenability toformalisation. We also consider the suitability or otherwise of some common means oftraceability used in the engineering and software settings. At a general engineering level,we consider the practicalities of a risk management log as a means of recording activities offormal development; for the software developer, we consider software con�guration manage-ment (henceforth abbreviated by CM), invoking a more theoretical look, reecting the wishto exploit the advantage of preciseness that may be de�ned in the relationships betweenformal objects.Second, we focus (in subsequent chapters) on the techniques to e�ect the safety-oriented re�nement of formal speci�cations. We choose to deal speci�cally with issues ofconcurrent systems, devising procedures and enhancing techniques which we shall latertest in relation to Flexport. In particular, an evolutionary procedure enables requirementsto be developed in stages and related to a model as it develops, suitable for any formalapproach in the context of safety being central to user requirements. Such an approach canalso facilitate a smooth transition into implementation, so that safety requirements do notbecome subsequently lost.All this allows for more owing and e�ective use of various well-established formaltechniques { such as Conformance Testing, which is extended in Chapter 5. We also showhow and where aspects of the research mentioned in the literature can be integrated withinthis overall scheme.3.4 Foundations for safety-based developmentWe describe here the system setting, including basic concepts for the formal de-velopment of safety-related software. Although the treatment is geared towards safetyanalysis and subsequent generation of safety-related requirements, various other kinds of

58requirements (economic, environmental, ... etc) can be treated similarly.3.4.1 Introductory conceptsThe �rst requirements come from the customers/users who are looking for a systemthat will meet their demands { which we denote by (USER-REQS). In response the systemdeveloper will generate a set SYS-REQS of requirements for the perceived system, S, whichshould be produced in some document (the requirements de�nition { see below).The nature of user requirements and system requirements may be illustratedthrough the example of a Patient Data Management System (PDMS) for a hospital. Inthis instance the users are hospital sta�, whose requirements may include an e�cient sys-tem that can handle large volumes of data; a exible setup that allows access from di�erentparts of the hospital, especially the Intensive Care Units, Operating Theatre, Administra-tive o�ces, etc; the system should be easy to use; the whole project should meet a certainbudget; and so forth. These requirements are drawn up in terms of the working practicesin the hospital.The hospital managers may invite tenders from various companies that deliversuch systems. In response such a company may take the list of user requirements, try toclarify what is meant and then develop a set of requirements in terms of the technologythat should meet their needs. These are called system requirements and they are producedby the system engineers in consultation with the users - the developer needs to understandwhat the users want and the users should understand how the system developers will meettheir needs.To meet the requirements in this case, any such system must include a network,component hardware and software and other system parts. For each of these parts require-ments may be drawn up: for example hardware requirements may insist that data must bebe able to ow between multiple platforms - the PC in the Patients' records o�ce throughto the console in an Intensive Care Unit. Part of the systems requirements would be thecommunications system; for these the system developers may inform the hospital managersthat a properly integrated network may be achieved by implementing some recognised stan-dard. Hence, an agreement may subsequently be reached requiring perhaps conformance tothe Medical Information Bus. Thus these may be taken as system requirements.In our context we consider the production of S as a process of re�nement froman abstract formal model to an eventual implementation. S is typically part of a greatersystem � with wider boundaries. Safety analysis is expected to have been conducted for �,with its scope extending throughout its components or subsystems. Where we refer without

59quali�cation to a 'system', it is S we have in mind. We de�ne for our context the followinggeneral terms:� requirements de�nition { a document detailing what is required by the users (USER-REQS) and a proposed system which sets out system requirements (SYS-REQS) interms of services, constraints and goals.� design { an ongoing process which starts with a conception of a system to meet therequirements de�nition and leads to a detailed de�nition of how the system can beimplemented� veri�cation { the task of checking consistency within or between objects in the design� validation { the task of checking that some (formal) representation of user require-ments actually meets these requirementsSafety requirements are those requirements for S which are derived from that partof the safety analysis which has a bearing on S. The determining of safety requirements is anactivity which follows on from the safety analysis. These requirements for a model may bepartitioned into two: functional requirements, which are speci�ed as part of the requirementsof normal operation, and non-functional requirements, which have been derived speci�callyfrom safety analysis. In particular, safety requirements should require that a model:� address the occurrence of faults discovered in hazard analysis� provide, where appropriate, methods of control, being design strategies for reducingthe risk from hazards.Fault trees model hazards that arise and propagate both through the occurrence ofundesired events and through normal system operation. The way that a hazard propagatesup a tree may well be simply a result of reliable behaviour of some system component thatis included in the functional requirements speci�cation. If the hazard is to be removedthen, as this example illustrates, one has to determine the relationships between the hazardcauses in order to see where and how it can be dealt with.This approach can be seen consistent with the 'Safety Requirements Speci�cation'phase of the standard Safety Lifecycle Model by regarding the 'non-functional' require-ments as methods of control to achieve the integrity required of the 'functional requirementsspeci�cation'.

60As an illustration of the distinction between functional and non-functional re-quirements, and the kind of decisions that need to be made regarding methods of control,consider the re�nement sequence of models Mi(i = 1; 2; :::; n) for a communications system.It may include the following requirements:1. M1 is to satisfy the functional requirement that data x is transmitted from station Xto be received as data x at station Y .Hazard analysis, represented in the fault tree, reveals that there may be an error inthe data received at station Y , having been propagated from station X . Hence ...2. M2 is to satisfy the non-functional requirements:(a) errors are possible during transmission of data (fault inclusion);(b) if there is an error in data x at station X , then a method of control mc isintroduced before it gets transmitted further. (fault tolerance)In this example, a fault tree can determine several possible sources of error. How-ever, here there is no stipulation about errors appearing at station Y , indicating that achoice has been made to control the hazard at a lower branch of the tree.3.4.2 Safety-related principlesIn order to justify reliance on the system we are developing, we are guided byprinciples for the provision of safety-related control systems as provided in draft standardsby the International Electrotechnical Commission [Int91, Int92]. These principles, listedbelow, are explained in an article on Programmable Electronic Medical Systems (PEMS)in [Bib95], which is a useful reference basis for work on Flexport. We relate the principlesto our context:1. safety is considered in the context of the whole system { the analysis is 'top-down' (ordeductive) from the identi�cation of hazards as experienced by the medical sta� andpatients, and reected in Fault Tree Analysis (FTA) [VGRH81]; and 'bottom-up' (orinductive) through Failure Modes, E�ects and Criticality Analysis (FMECA) [Bri91].Another key method is the use of HAZOP [Che87], now tailored for ProgrammableElectronic Systems [Def95], for which an overview is presented in [CBM+95].2. a development lifecycle is used { the Safety Lifecycle Model

613. a risk management process is used { closely tied to where risks apply with respect topre-de�ned baselines4. risks are required to be As Low As Reasonably Practicable (ALARP) { to be minimisedthrough various measures, but particularly formal methods5. safety integrity is used as a measure of the likelihood of a system performing safely {computing safety integrity is di�cult. However, at least for a formal speci�cation, weexpect formal proof to contribute to high levels of integrity.3.5 Analysis of the Safety Lifecycle Model with regard toFormal MethodsThe initial development of the system software is in a formal setting { it is thisformal system that is to be re�ned towards implementation; it is likely that the softwaresystem will later become increasingly less formal, but nevertheless in its initial stages, wetreat it as completely formal. In keeping a focus on safety, we must consider hazards andrisks throughout the development process. In this section we treat in turn each stage ofthe safety lifecycle model and discuss the scope for formalisation. We also provide somemedical examples, which help to provide suitable background for Flexport.Part of the process involves establishing whether or not there exists a formallanguage to capture these concepts. If so, we can formulate the informal requirements.We have cited in Chapter 2 some common formal de�nitions of safety-related properties,but they may or may not correspond to those in the engineering setting. Further, thoseproperties that can be formally de�ned may be insu�cient to cover the kinds of propertiesassociated with hazards, say. We consider this issue of completeness below, after respectiveintroductions.3.5.1 Overview of Hazards and RisksHazard Analysis, Risk AssessmentThe System and its Environment are analysed to locate hazards and determine thenature and severity of any potential risk. The levels of risk are used in the stipulationof measures that need to be taken for the delivery of a system on which we maydepend for safety (see sections 2.2.1 and 2.2.2 for discussion).

62A key component of the development is the management of risks arising fromhazards { it must be made clear what risks there are and how they are handled. Weintend the risk management to proceed with the following steps, which in practice shouldbe iterated throughout development:1. Identify and list hazards2. Use FTA to recursively identify hazard causes (other hazards) until root causes areestablished; use FMECA to identify further hazards3. Estimate risks, making use of risk charts4. Introduce appropriate Methods of Control5. Plan CM baselines6. Compile Risk Management Log3.5.1.1 Hazard Identi�cationFor generating a list of hazards which are typical in communication, it is mostuseful to have a broad view which takes in the experiences of patients, medical sta� andengineers as well as more theoretical views. Asking nurses about the problems they haveencountered may point to hazards not anticipated by a software developer, whilst somemay point to other issues such as training and HCI. Assurance that the protocol has beendesigned to ensure a safe system is partly provided by addressing and responding to suchexperience.Determining a complete list of hazards is problematic because some hazards haveunknown cause and unknown e�ects, especially where people's behaviour is involved. Thereare methods which facilitate the process for programmable electronic systems derived fromHAZOP. One such technique is SHARD [FJMP94], which incorporates the extensive re-search that has been undertaken into developing classes of guide words which suggest pos-sible system failures. SHARD uses the following failure classes:Service provision: Omission, CommissionService timing: Early, LateService value: Coarse Incorrect, Subtle IncorrectIn the case of safety-critical communication protocols, we require reliable, con-stantly available, and accurate data transmission (relating to signals and transmission me-

63dia). Dependent upon the communications channel, is data communication, for which werequire the reliable, constantly available, and accurate communication of information. Wemay combine the three failure classes into two { provision and timing { and enrich them togive a classi�cation given in the appendix.3.5.2 Formalizing hazards for requirements analysisThe purpose of this section is to give a (formal) overview of the general require-ments of formal languages for the analysis of safety and the generation of requirements forsoftware models. We start by considering the requirements capture and draw up a formalmodel for establishing the relationship between hazards that have been identi�ed and theuniverse of formal logic-based languages. It is immediately evident that any hazard that isidenti�ed may be given a formal denotation, but its meaning has to come from some �nerstructure; further, the ability to do reasoning depends on a language that is able to expressrelationships and prove properties reecting real world situations between the hazards.Thus, the problem of existence appears to have two parts: the need to express bothindividual hazards and the kinds of relationships between hazards. As a system is typicallya multi-layered structure, then a hazard is often de�ned in terms of its components, whichmay well include hazards themselves. So the problem of existence is de�ned by the abilityto express relationships: horizontal { between hazards at the same level of abstraction; andvertical { in terms of lower level components that make up a hazard.Given common notions of hazards, there need to be considered some general cri-teria for suitable formal languages.1. A well-de�ned syntax2. language has a proof system that is sound and completeEnsuring safety may be variously characterised in response to the hazards. Ageneral approach is to consider each hazard in turn, analyse it, and then determine a set ofrequirements and subsequently show that a system satis�es these requirements.3.5.2.1 The Hazard Existence ProblemWe present the formalisation of two types of the hazard existence problem: �rst,in terms of whether hazards at a given level of abstraction can be modelled implicitly interms of internal structure; second, in terms of sets of hazards for which a language canmodel all the required relationships between denoted hazards.

64Note that these de�nitions span the 'informal' and 'formal' worlds, so they aresemi-formal de�nitions, dependent upon subjective interpretations on words such as 'suit-able' (always a potential source of divergence for validation). First we give the 'verticalproblem'; and then the 'horizontal problem', where we take the view that some given haz-ards are atomic units, thereby obscuring their internal detail.Let A denote an alphabet of symbols and let H denote the set of documentedhazards h, where h 2 A� is just a string of symbols. Each h may be characterised throughan appropriate formalisation of the properties; its signi�cance arises in relating it to somecontext { a formal model. This raises the issue of what to choose in the way of languages forproperties and the system model respectively. Where these are underpinned by a commonformal semantics, the relationship can be made directly: in systems such as the modal mu-calculus, introduced in Chapter 2, the underlying framework is that of labelled transitionsystems in which properties are actually identi�ed with sets of states of the system, though,in practice, a system model may have to be explored before it is revealed whether or notsome hazardous states exist.Here we concentrate on the formalisation of properties. Let � denote a formallanguage and let H denote a set of hazards. We de�ne a simple valuation v� : H ! ftt; ffgby: for each h 2 H, let v�(h) = tt if the property h may be logically formalised in �, ffotherwise. Let H+ = fh 2 H : v�(h) = ttg. Since it is the case, that for any given hazard,it may be viewed as either atomic or made up of components, this represents, in e�ect, theability to model vertical relationships.In order to make more use of structure, let H be partitioned into n distinct view-points Hi (for instance, levels of abstraction), i.e. H = Sni=1Hi. Suppose that we have alsoa set of informal relations between the hazards, which we denote by R. As R consists ofhorizontal and vertical relations, we may partition this set as follows: R = RV [RH , whereRH = Snj=1RHj . We de�ne that � is complete with respect to (R;H) if every relation in Rmay be formalised in �. In the case that � is not (R;H)-complete, we de�ne the closure of(R;H) in � to be the set of H-maximal subsets K such that � is (R;K)-complete.Using the partitioning, we can be more precise about the level of completeness.Suppose that H has been partitioned as above, with R = RV [RH , then � is (horizontally)complete with respect to (R;Hi) if every relation in RHi may be formalised in �. In the casethat � is not horizontally complete with respect to (R;Hi), we de�ne the horizontal closureof (R;Hi) in � to be the set of Hi-maximal subsets K such that � is (R;K)-complete.Similarly, for the vertical relations: � is vertically complete with respect to (R;H) if every

65relation in RV may be formalised in �. In the case that � is not vertically complete withrespect to (R;H), we de�ne the vertical closure of (R;H) in � to be the set of H-maximalsubsets K such that � is (R;K)-complete.Hence, � is horizontally complete with respect to (R;H) if and only if 8i 2f1; 2; :::; ng we have that � is horizontally complete with respect to (R;Hi). Further, �is complete with respect to (R;H) if, in addition, � is vertically complete with respect to(R;H). For this setting we may then de�ne a notion of safety in terms of two factors: theability to model the informal hazards and their relationships and the demonstration thatthe formalised property (the negation of the hazards) holds for the formalised system:De�nition (System safety)Given a set of relations R has been de�ned over a set of hazards H, then a systemS that is formally developed in � is de�ned to have system-total safety if1. � is complete with respect to (R;H)2. 8h 2 H, Sjj= :h, where jj= denotes a satisfaction relation between representations ofa system and properties.Various weaker relations of satisfaction may be de�ned depending upon the com-pleteness of the coverage of hazards and the extent to which these hazards are shown to nothold for the system representation.3.5.2.2 Reasoning about HazardsWe continue the discussion by making explicit the kinds of relations that may existbetween hazards. In the safety lifecycle model, given a hazard, various techniques are usedto identify their contributing causes, stimulated by guidewords. They can arise throughtemporal chains of events or, perhaps, their simultaneous occurence. They may also be dueto the nature of their internal structure { which may be termed subhazards. Throughoutthe process the analyst has to reason about how all these hazards are related, for whichFTA is one of the most useful means.In general, a formal approach needs to:� establish some formalisation of temporality, or perhaps more concrete notions of time,where hazards are temporally related;

66� where a hazards is composed of subhazards, then use decomposition on the formalisedhazard. Ideally, any properties � should be expressed in some 'normal' form { as aconjunction of properties � = ^i2I�i, whence � is true if and only every component�i is true.FTA is perhaps the most well established technique for formalising these relation-ships (see Chapter 4): it can be used to analyse the formulae themselves to establish howthe overall formula may be negated, perhaps aided by compositional reasoning as givenin proof tree analysis. Underpinning such activities is the consideration of to what extentthe discovery of causes should be carried out in the informal or formal worlds, which de-pends upon the level of detail in the system models. For e�ects, HAZOP deviations can bedetermined using FMECA which can reveal previously unconsidered hazards.In practice some hazards cannot be negated, though may be safely tolerated,and hence the above de�nition of safety is rather simplistic and somewhat inaccurate. Amore sophisticated view (which is treated in the next chapter) is to consider more generalrequirements generated from hazards, so for any given hazard h, a set of required properties�(h) may be de�ned, where once again one has to consider the issue of completeness sincethe requirements are driven from analysis of the real world situation. Further, proving allthe properties does not imply that the safety of the overall system is completely ensured,since it is generally impossible to prove such completeness { how do we know that we haveanticipated every hazard?The structuring methods we have described are illustrated for hazards, but maybe applied more generally, including to the SSG's of de Lemos et al, which record severaldi�erent kinds of activities. The SSG's are produced in an incremental manner as thesafety analysis/requirements phases develop. Applying the partitioning scheme above canfacilitate especially the reasoning about completeness of the SSG's. We apply it to theformalisation of fault trees in the next chapter.There are the following additional considerations.1. New hazards can be discovered in the real world, which should then be considered forincorporation in the formal logic language2. New relations may be discovered in the real world; the formal language should thenbe checked for its ability to model these; and the closure to be reassessed accordingly.(Although there is the notion of 'kicking away the ladder' once the formal scenario issettled upon, in reality, new information may always be forthcoming.)

673. All such changes need to be recorded by some meansIn summary, even using a simple view, the discussion of completeness throughthe use of partitioning indicates that formal languages require tremendous scope in theirabilities to model the desired properties and to e�ect proofs. It provides a useful motivationfor investigating the relative expressiveness of di�erent languages.Progress in this regard is generally in its early stages, though some signi�cant e�orthas been made to introduce more structure into state-based descriptions in the de�nition ofRSML (Requirements State Machine Language), a functional language that allows compo-sitional reasoning. Indeed, using this language, the issues of consistency and completenessare e�ectively treated in [HL96]. The tradeo� is that the semantics restrict the expressivityto some extent, for instance non-determinism is not allowed, yet even so a U.S. airbornecollision avoidance system is substantially validated.3.5.2.3 Example: Insulin Delivery SystemWe illustrate some of the ideas using an example of an insulin delivery systemwhich is described in Chapter 21 of [Som92], where there is some discussion of hazardanalysis. Although such a system is not from the ICU, the kinds of hazards in this exampleare likely in many intensive care systems such as intravenous pumps. First, we give a shortintroduction.Those su�ering from diabetes require supplementary doses of insulin on a regularbasis to ensure that they have the right levels of glucose sugar in their bodies: low levelscan quickly have serious e�ects on the brain, whilst ongoing high levels may give rise toproblems in the eyes and kidneys. Doses also have to be carefully controlled to allow forthe fact that the absorption and e�ect of the insulin is a function of time.Advances in technology through the use of microsensors allow the level of bloodglucose in the body to be constantly monitored. Hence, this information may be transmittedto a pump and dosages given accordingly using a needle attached permanently to the skin.We now illustrate some of the formalisations of hazards and their relationshipsusing this example. Note that the questionnaire in Appendix H should help this analysis byeliciting through experience further hazards and also hazard causes. In [Som92], Somervillegives the following list of hazards, to which we add denotations h1 to h7.h1: Insulin overdoseh2: Insulin underdose

68h3: Power failure due to exhausted batteryh4: Parts of machine break o� in patient's bodyh5: Infection caused by introduction of machineh6: Machine interferes electrically with other medical equipment such as heart pacemaker.h7: Allergic reaction to the materials or insulin used in the machine.In our formalisation, we consider �rst how to model the structure of the hazardsthemselves. In this context, the modelling of the �rst two hazards is impractical in a processalgebra, but may instead be served by some state-based language such as VDM or Z. Firstsome variable may be de�ned over the real numbers to measure dosage, but then we mustask, "What is an overdose (underdose)?". Such a consideration may lead to de�ning upperand lower bounds on quantity and the de�nition of dosage in terms of a function on a timedomain. For treating the hazards and their relationships, we look at spacial and temporalrelationships. For example, we can analyse each statement and decompose using eventsplitting, triggered by conjunctions such as "due to", "resulting from", "caused by".For example, for h3, "Power failure due to .." is a signal to consider all the causesof power failure and may be expressed as a disjuntion of causes:h3 = h31V h32V:::V h3nwhere h31 = "battery is exhausted"; h32 ="fuse blown", etc.The systematic means for determining causes - spatial and temporal - is faulttree analysis. In this case, we may abstract out from the details of what states actuallyconstitute the top level hazard and develop various logical relationships that may be bestserved by some temporal logic. Hence h1 and h2 may be combined into one top level fault,yielding a fault tree, part of which may be as in Figure 3.1 (reproduced from [Som92]).For the analysis of the tree, we select one of the causes of the top-level hazard,viz 'Incorrect Sugar level measured'. This has in turn as a cause 'Sensor failure' - a sensormight have jammed at a certain value resulting in no change to the sugar level measuredduring some �xed period. In this case, it is more appropriate to express this hazard as atemporal relationship rather than a simple disjunction. Further, if one wishes to be strictabout duration in terms, then the logic ought to have an explicit means for measuring time.These interpretation issues in Fault Tree Analysis are discussed in more depth inthe next chapter.

69
Pump
signals
incorrect

Insulin
computation
incorrect

Sensor failure

Arithmetic
Error

Incorrect sugar
level measured

Incorrect insulin
dose administered

Delivery
System Failure

Correct dose
delivered at
wrong time

Algorithm
error

Sugar
computation
errorFigure 3.1: Fault Tree for Insulin Delivery System3.5.3 Safety integritySafety integrity is de�ned as \the likelihood of a safety-related system achievingthe required safety functions under all the stated conditions within a stated period of time"[Wic92]. For the formal scenario, one needs to determine what is meant by 'under all thestated conditions' and 'within a stated period of time.' This will depend to a large degreeon the interpreation of the safety analysis.The provision of integity levels is de�ned by:Safety Requirements Speci�cationThis speci�es the requirements that vary in strength according to the integrityrequired of respective functions. It has two parts: Functional Requirements Speci�cationand Safety Integrity Requirements Speci�cation.Functional Requirements Speci�cation\ ... identi�es which functions of a system are safety-related and in what ways."This process requires that risks associated with hazards are computed for their bearingon the various functions of the system. For each system function a map can be de�nedthat relates it to a set of risks.Risks are estimated and may be quanti�ed as follows: let Nr = f1; 2; :::;mg, wherem is the number of risk categories. Let � be a set of risks. Now de�ne a valuation

70v� : � ! Nr by: for each r 2 �, let vr = n, where r has been (informally) assignedrisk category n. Let FS denote the set of functions for a system S. Now de�ne arelation } � FS � � by: 8� 2 �, 8F 2 FS , F is assessed to be related to some risk �if and only if (F; �) 2 }.Treating the type of relationships is a more complex process, which may be determinedfrom the hazards analyses since risks provide only assessments or quanti�cations ofthe potential consequences of hazards.For some systems, such as a medical communications protocol, virtually all aspectsof the system may be safety-related, contributing to the transmission of vital patientdata, which must be accurate. According to the risk assessments, we may pick outcertain salient functions to which we pay particular attention, which is given by thenext phase of the lifecycle.Safety Integrity Requirements Speci�cation\ ... begins with the functions identi�ed in the Functional Requirements Speci�cation;it speci�es for each of those, the required safety-integrity levels."In the case of communications protocols, system integrity is in terms of correct andtimely communication of data.The purpose of these integrity levels is to ensure that appropriate risk reduction ise�ected, so that at a minimum a 'tolerable' risk is achieved. For the purposes of theformal treatment, we need to ask what this means, i.e. what constitutes a tolerablelevel of risk in a model? This amounts to determining what set of requirements mustbe satis�ed so that the risk is adequately covered. As already discussed for hazards,formalising requirements is a problem of speci�cation, dependent upon the expressivityof the formal notation(s) used for expressing properties, whilst demonstrating thatrequirements hold is the problem of relating models to properties.Indeed, such requirements prompt further investigation into formalisation since theywill be reected in general terms by varying degrees of rigour of method { bothinformal and formal methods { to be used in the methods of control (see below).This kind of classi�cation can be applied to the formal setting itself: the type ofvalidation is directly determined by the interpretation of notions such as liveness andfairness and indirectly through notions of re�nement such as conformance, a binaryrelation between speci�cations which stipulates that some behaviour exhibited by onemust hold in the other (see Chapter /refch:conftest). The formal de�nitions must

71be validated for their correspondence to the degrees of satisfaction as stipulated bythe safety integrity requirements. This should also involve a thorough analysis of theproof techniques to be used and what is expected from them.Transferring grey, sometimes fuzzy, notions (of degrees) into traditional propositionallogic is a di�cult matter since outcomes to decision problems are generally black,white or unclear, (or 'Yes'/'No'/'Undecided'). In view of this, it becomes evident thatthe issue of completeness is important, for it o�ers scope for shades of grey. However,since we are typically dealing with very high levels of integrity, such philosophicalconsiderations are obviated by simply stipulating that total completeness is expected.This highlights the fact that the exibility really lies in the choice of requirementswhich are to be proved.Looking at this from the side of the various formal techniques, we have that di�erentkinds of decision problems can be classi�ed according to strength. Hence, for a minorrequirement which may con�ne its attention to just a small part of the system, it maybe su�cient to perform simple �nite reachability analysis to test for a property. On theother hand, a major requirement may require a property to hold in all system states(the formal notion of safety de�ned in the previous chapter), which would require apowerful state exploration method.The amount of e�ort we put into proving properties should be proportional to theirimportance as regards ensuring safety. In the lifecycle model, safety integrity measuresthis importance and there are de�ned 5 levels to reect this, ranging from 1 (veryhigh integrity) to 5 (very low integrity). In the formal setting, there is an analogueto this: a suite of partial tests to check for speci�c behaviour may be considered asproviding weaker integrity than the veri�cation of an implementation relation, say.Hence, notional relationships may be established between levels of integrity and thetypes of proof required. We give a simple denotation: let NV = f1; 2; :::; nvg, wherenv is the number of integrity levels. Let P be a set of types of proof. Now de�ne avaluation vP : P ! NV by: for each p 2 P , let vP = n, where p has been (informally)assigned integrity level n. In practice, a table may be drawn up listing for each levelof integrity the designated proof measures.In standard guidelines on methods required for the development of safety-relatedsoftware, only those functions which are assigned the highest integrity level stipulatethe use of formal methods, but the formality of measures speci�ed is a minimum, andwhere feasible, in terms of e.g. e�ciency, designers should consider making use of the

72potential extra bene�t o�ered by the scope and correctness of formal analysis.Designation of Safety-related SystemsThis phase is the output of the safety requirements speci�cation phase, specifyingthe parts of the system that are safety-related, assigning to these some indication ofthe relative signi�cance and hence the safety integrity levels. At this stage it may bedecided what are to be the methods of control that are to achieve the required levelsof integrity for each of the designated systems.This marks a change of emphasis from systems requirements analysis to systems de-sign. In particular, in the formal setting, the focus is now on the task of building amodel. The methods of control are design strategies which are intended to ful�l therequirements. This is the context in which are set the veri�cation and validation is-sues raised in the discussion of formal methods (Chapter 2, section 2.6). For instance,we could take advantage of the fact that the model can be built in modular fashionsuch that in many cases if some property holds for a component, then it holds for theentire system.Methods of ControlOnce the requirements have been determined for the risk reduction, methods of controlare speci�ed for the system to e�ect this reduction. FMECA may be used to establishpossible failures of the system, for which further methods of control may be speci�edto ensure that its integrity is assured.As for safety integrity levels, we provide a simple means for denoting the relevantrelationships as can be applied to formalised objects, this time between hazards andmethods of control. We may take the view that we select from a universe of informallyspeci�ed methods of control, M, say, which, in reality, is likely to be an in�nite set.As above let H be a set of denoted hazards. We de�ne a relation � � M � H by(m; h) 2 � () \m is a method of control for h". In practice, once again, this setis chosen informally. Also note that methods of control will usually have to addressrequirements other than those related to hazards.In our case study, one task is to use formal methods to validate an informal documentthat may be considered as a proposed implementation of a set of user requirements.Any such document may be modelled as a set D of items d, such as paragraphs,tables, and their substrings/subtables. We may then regard D as containing a subsetMD �M of such methods speci�ed informally.

73Just as there may or may not exist a formalisation of hazards, it may or may notbe the case that the document contains an appropriate method of control for a givenhazard. We therefore de�ne a valuation vHD : H ! ftt; ffg by: for each h 2 H, letvHD(h) = tt if there exists a method of control m 2 MD such that (m; h) 2 �. LetD+ = fd 2 Dg such that vD(d) = tt. Let HD = fh 2 H such that vD(h) = ttg, thenHD is a subset of H+ . As proposed standards documents may be placed in this class,valuations of this kind, using formal techniques, can help to assess their feasibilityand contribute to their enhancement.3.5.4 Design, veri�cation and validationThe lifecycle model then conceives the process of designing the appropriate systemin terms of the following:Validation Planning, Design & Implementation, Veri�cation, Safety ValidationThe basic concepts and principles for these stages are well established (summarisedin Appendix A of [B. 89] and are discussed in detail in, e.g., [Wic92]). It is realised thatprocedures will depend upon the particular system and context being developed.The impression given by the standard lifecycle model is that validation is performedafter any number of incremented designs: note the two way arrows between 'Design andImplementation' and 'Veri�cation'. This appears restrictive, so we propose that the formaldevelopment be carried out as a sequence of stages, as conceived using the model givenpreviously in Figure 2.3 which is specially designed for the formal development. Its structureprovides complete coverage of the stages indicated in the lifecycle, whilst emphasising thenature of ow in step-by-step re�nement.3.6 Managing the re�nementIn this section we look at the support required for managing the development offormal software items. In large projects such as presented in the LOTOSphere reports, manyissues are discussed, ranging from systems design to technical points; however, the issuessurrounding the management of change are not so clear. In response, the next sections areintended to clarify matters through the discussion of CM and Risk Management frameworks.One of the few papers that focuses speci�cally on making changes to formal items is[BW94], in which there are some general guidelines for maintenance, including an analysisof the types of changes that can be made. The paper establishes this approach within

74the context of CM control. We review here the reasons for change in general and discussthem from the perspective of re�nement, with some reference to the LOTOSphere DesignMethodology [LOT92c, LOT92b]. In Bustard and Winstanley's work, the requirements forchange are partitioned into three steps:1. understanding the need for change;2. implementing the change;3. evaluating the change.The requirements analysis stage establishes the main requirements of the intendedsystem, often to quite some detail. Owing to the complexity of all but the simplest systems,it is generally impractical to incorporate all these requirements in an initial model. Hence,a development in stages is used, so a succession of changes will be required, thereby needingthe repeated application of the steps above. Understanding the need for change will belargely determined by the extent to which the requirements have been implemented.Building the system may also require alternative design trajectories (developmentpaths). In the detailed methodology guidelines for LOTOS processes, as presented in theLOTOSphere Design Methodology, a design trajectory is considered as a tree of re�nements,rather than a single path. Figure 2.3, which shows just one completed path, should be seenin such a wider view: we discuss the suitabilty of a tree as a model in section 3.6.2.2.Where more than one path for the re�nement is being investigated for suitabil-ity, evaluations are performed at the completion of each item, with respect to consistencyand safety integrity from the ongoing safety analysis and requirements derivation. Thisis characteristic of a tree search: a suitable node is 'found' when an item is deemed OK,thus enabling undesirable or inconclusive branches to be 'pruned'. Feedback from 'failed'branches is useful as input to the other branches being investigated.In succeeding sections we discuss each of the steps with respect to our context,starting o� with the mechanics of change, i.e. implemention.3.6.1 Implementing Change as Formal TransformationIn the formal setting, change that is given a well-de�ned meaning is termed trans-formation. In any transformation, there are many issues to consider, e.g., once some prop-erty of a speci�cation has been proved, does this property still hold after a given modi-�cation? In the formal context, one has a range of options: one can prove a priori thataccording to a given notion of correctness, certain changes preserve certain relations and

75properties. These are called Correctness Preserving Transformations (CPTs) and for LO-TOS there is a list given in [LOT92a], some of which are supported by tools. On the otherhand, one can use methods of proof to show post hoc that properties hold, but this usuallytakes more e�ort. Ideally, we would like the whole process of re�nement to be a sequenceof CPTs.In summary, implementing changes to formal items in the re�nement can be donein various ways:� according to a prede�ned transformation (or template) where semantic e�ects arealready known� according to a series of transformations on the model, whose e�ects are not known� according to a series of manual changesThe �rst requires evaluation to the extent that the updated model can be anal-ysed to provide further feedback into the requirements: in general, a complete picture ofthe e�ects of a given transformation may not be fully known, even though some relationsembody the notion of \not introducing any undesired behaviour". The second and third,which provide increasing levels of uncertainty, need veri�cation and validation after thechanges have been made.The notions of correctness above are for any item and for any relation, whosestrength will have already been de�ned by the valuations for 'methods of proof'. The kind(or, preferably, choice) of transformations between respective items needs to take account ofdesign practices, which themselves need some management framework. Such a frameworkis discussed next.3.6.2 Con�guration ManagementIn this section we provide a framework which enables a closer examination ofrequirements for change, the kinds of relationships that can exist between formal objects,and ways of evaluating the change with respect to the nature of these relationships.For instance, one can apply principles of CM to formal structures to facilitatethe construction of useful CPTs. One aspect is to establish 'loose coupling' to minimisedependencies after which it should become clearer how CPTs can be designed to preservecertain item properties and aid in the construction of methods of control.

763.6.2.1 Items, Con�gurations and Con�guration GraphsTwo concepts that are essential to CM (as provided in, e.g., [Whi91], which is auseful guide to the subject) are de�ned as follows:item Software which is treated as a unit for the purposes of CM.baseline An item which has been fully approved serves as a basis for further devel-opment and can only be changed through formal change control procedures. Usuallythe term baseline refers to all items produced by a phase of the project lifecycle.[IEEE-729 Standard Document, 1983]One type of `super' item is a con�guration, being the collection of items which ful�la particular purpose, such as a safety case. A con�guration is in general a representationof the entire system under construction, being a snapshot of the collection of items whichmake up a stage, covering various development activities. The items with which we areconcerned start o� as formal, so formal relations should be established between them. Thewhole process of their re�nement can become unambiguous if all these items can be setin a suitable formally de�ned framework. Further, formally modelling all items in themanagement proces may aid understanding of the overall development.A general structure that provides a suitable model is that of a directed graph, whosenodes represent con�gurations and whose edges represent changes in the con�gurations.Whenever alternative changes are made to a given con�guration, then more than one edgeis produced from the respective node. The items may be related with respect to theirrelative development in time, inducing a simple partial order. Each node may be labelledwith a version number { according to the con�guration's level (in terms of the depth ofre�nement) and the particular branch.Such a graph model, as illustrated in Figure 3.2 is generic, which may be vari-ously instantiated for the development of component structures. Note, for instance, thatcon�gurations can consist of con�gurations (e.g., the overall CM can contain as one itema collection of independently evolving partial subcomponents...)! For small systems, it isusually most convenient to think in terms of just one CM model; but for very large activitieswe may apply the principle of abstraction and so several may be suitable.Referring to the �gure, a con�guration graph (or CM graph) CG is de�ned as alabelled graph (labelled unambiguously) where each node (item) is a con�guration, belong-ing to a set I of items; a set of relationships � � I �I may then be de�ned between items.A label l is associated with each node to denote the version of the con�guration, where

77
ρ

1

ρ
5

ρ
2

ρ
3

ρ
6

ρ
9

ρ
7

ρ
10

ρ
4

ρ
8

ρ
ι denotes a relation between itemsFigure 3.2: A generic Graph of re�nement in CMversions are de�ned according to some algorithm that provides an unambiguous labellingscheme that allows for branching o� any given branch: one such scheme is used in RCS[Tic85], a version management tool. This a straightforward inclusion, which supports theview that modelling the overall CM process in terms of a directed graph is a fairly faithfulrepresentation of established industrial practice.In order to reason about con�gurations, we make use of the fact that they consist ofsets of items of various types. Hence, certain intra-con�guration relations (item dependen-cies) may be sought to check especially for internal consistency. Further, inter-con�gurationrelations may be established between items in di�erent con�gurations: analagous to themethodology for hazards, 'horizontal' relations may be established to compare alternativemodels or other items along di�erent branches, and 'vertical' relations may be establishedto compare items along the same branch. The nature and scope of the relations will dependupon the relative types of the items being compared.3.6.2.2 Strands within CMSince con�gurations contain all manner of items, it is usually not possible to de-�ne a formal relationship between them except for the purpose of modelling managementprocesses. However, by analysing constituent strands (or sequences of successive items),through an instantiation of the graph model, the formal relationships can be drawn out.Hence, where the items are models or formulated requirements, we may investigate these

78relationships, de�ning semantics for �, according to the kinds of transformations that maybe performed. In particular, if each �j is a preorder contained in a relation �X , say, thenwe have the following:Let I0 be an initial model, and I1; I2; :::; In be a succession of re�nements suchthat (I0; I1) 2 �1; (I1; I2) 2 �2; :::; (In�1; In) 2 �nand where 8j:�j � �X . Then (by induction) we have that (I0; In) 2 �X .If � represents the notion \is an implementation of" then this implies that In is a(valid) implementation of the speci�cation I0. We may also say that each �j is of type �X .Regarding the strands of items { through which are de�ned the vertical inter-con�guration relationships { the structure of their evolution needs to take account of theoryand practice related to the relevant activities. Speci�cally, regarding the development offormal models, from a theoretical perspective, the development needs to be undertaken in asound and, preferably, complete manner; important practical constraints include allowing ateam of designers to work concurrently on di�erent aspects of the same problem, implyingthe construction in parallel of several models whose composition is intended to produce anoverall model of the system. In this instance, a directed graph is a su�cient representationsince parallel activities may be modelled as branching from an initial 'empty' node and edgescan be joined later on as speci�cations are merged. This is not so for a tree representation.For large systems in general, various techniques have been employed to handlecomplexity, based upon some paradigm, of which object oriented approaches are a popularexample [Boo91]. Another paradigm that has been developed for distributed systems isthat of a viewpoint [FKN+92]. This has subsequently been adopted for emerging standardson Open Distributed Processing [1-495]. Note that the LOTOSphere Design Methodology,bearing close comparison with standard waterfall models, does not cater explicitly for suchparallel development.Viewpoints are readily incorporated as concurrent strands in the directed graph;key issues that then arise concern consistency between items in di�erent viewpoints andtheir merging (or composition) into one item with a single viewpoint. Promising work ontackling these issues for system models has been treated in [SBD95], where this approachis addressed within the context of re�nement of LOTOS speci�cations. The paper givesthe following notion of consistency for (partial speci�cations) which are intended to becomposed further along the development path.

79De�nition (Consistency and Composition)Given two speci�cations S1; S2 and a re�nement relation ref � SPEC � SPEC,S1 is consistent with S2 with respect to ref, denoted S1 Cref S2 i� 9S 2 SPEC � S ref S1and S ref S2; any such S is called a composition of S1 and S2. (SPEC denotes the set ofall speci�cations).This de�nition forms the basis of a systematic treatment of various notions ofre�nement and the de�nition of their respective notions of consistency together with someresults on composition according to various re�nement relations and the de�nition of variouscomposition operators. We are able to generalise this de�nition both to �t our wider frame-work and, speci�cally, to allow di�erent viewpoints to have di�erent notions of re�nement.Hence we have the following:De�nition (2-relation Consistency and Composition)Given two speci�cations S1; S2 and re�nement relations ref1; ref2 � SPEC �SPEC, S1 is consistent with S2 with respect to ref1; ref2, denoted S1 C(ref1;ref2) S2 i�9S 2 SPEC � S ref1 S1 and S ref2 S2; any such S is called a 2-relation composition of S1and S2. In using process algebras for system modelling, speci�cally LOTOS, such relationsare based on labelled transition systems, which, as has been detailed in the previous chap-ter, o�er much scope. There has also been work done within the viewpoints setting torelate models in di�erent languages, speci�cally LOTOS and Z [DBBS96]. These papersdemonstrate how models that evolve in parallel may be related. In the next chapter wetreat an alternative problem of the relationships between concurrently evolving requirementsspeci�cations and system models as be�ts the focus on safety.3.6.2.3 Target baselines for CMOnce safety integrity levels and then methods of control have been determined, wecan plan the phases of the project to reect the various requirements, thereby providing somefocus for the change management. Although the requirements may have to be modi�ed asthe model develops, it is helpful to have a series of targets to aim for, in terms of the amountof requirements accounted for in the evolving design. In view of the three perspectives inmaking changes, we introduce the notion of target baselines, being a set of requirements onitems and which is associated with a stage in development.In determining such targets, we note that system development may incrementbaselines according to:

80� mission requirements: i.e. modify the functionality� safety requirements: i.e., introduce or modify some method of control� other non-functional requirements (such as performance)For safety-related systems, risks should be seen to help drive the constructionprocess. Using the characterisation of hazards or causes as faults, we can draw up a sub-classi�cation which lists the di�erent ways we can increment baselines with respect to thesafety requirements:� fault inclusion� fault prevention (method of control)� fault tolerance (method of control)� ... etc.Similar subclassi�cations could be introduced for other kinds of requirements.Applying the 3-step paradigm for change, one must consider when moving fromone baseline to the next what impact do certain changes have on the system's integrity {the relationships between components especially; and how do they a�ect the overall safety?3.6.2.4 Recording Changes in the Re�nement's CMAt each re�nement step, we need to determine for each item how it is a�ectedunder the change. As our re�nement contains multiple steps, this entails a lot of checks.So in order to record this process, a change history needs to be maintained, with specialattention to the activities of veri�cation and validation. For each item, we may set up achange history to document changes between item versions.Contingent with the change history is the notion of item 'status', being some levelof approval for the item. The software items to which CM has been traditionally appliedare non-formal | source code, object �les, ... etc. The kind of status these have aretypically to do with testing, with simple stamps for whether the item works okay by itselfand perhaps within a larger system. Even if such tests are carried out in accordance with'best practice' or standards, they can still be prone to subjective interpretation (and hencevariation) between companies, and what they record cannot be proved mathematically.Formal items are unambiguous and will require records where the status of itemswill be with respect to tests like the above, but also to the satisfaction of universally

81de�ned formal relations. We envisage approval based on the extent to which an item hassatis�ed consistency and properties �tting the levels of veri�cation and validation stipulatedaccording to integrity levels. There is a close relationship between the management of changeand that for risk: the properties of a speci�cation item should correlate with methods ofcontrol of hazards, and the status of an item will depend on the extent to which it achievesthe respective integrity levels.Although the change history can record the status in the development of individualitems, it becomes inadequate in recording the wider status of a con�guration, so other meansare required. As a solution, information regarding properties and their preservation can berecorded in the Risk Management Log, whilst wider issues of integrity can be recorded insome other log, perhaps we could call Consistency Log.The Consistency Log could record the integrity of a con�guration in terms of itscomponent items, with a list of the relations that must be satis�ed between them for thecon�guration to have an 'approved' status. Each such item would be placed under versioncontrol and then versions can be selected for the veri�cation activities. This is an opentopic, which should be the subject of future research.3.6.2.5 Tool SupportTool support for software CM is widely available, but generally without any facil-ities for supporting formal items; most cater for standard programming languages such asC. Hence, more of the workload falls on the tools that have been explicitly developed forformal methods analysis and crude tools that are able to handle any items.For instance, regarding LOTOS, one can expect development to be carried outunder LITE (Lotos Integrated Tool Environment) [PvEE92] which runs under the UNIXand X windows system and operates on most SUN system. It is integrated in that alltools share a common representation (CR) and have been developed to support the LOTO-SPHERE design methodology [LOT92b, LOT92c], which is based on step-wise re�nementwhere design decisions can be gradually incorporated at each step. LITE supports manyaspects including the creation of speci�cations with a structure editor which checks syntaxand semantics, a exible simulator SMILE[EW93] and other tools for the generation oftrees, G-LOTOS graphical representations, and even a report generator. As described inChapter 2, other tools such as the CADP toolset [FGM+92] o�er more powerful veri�cationfacilities. However, these provide generally little assistance for CM, so a combination oftools are used for maintenance tasks. Thus, speci�cations may be built up by use of a

82template which is pre-processed using some macro processor to generate a target LOTOSspeci�cation. Such a template may 'include' components (as for C source code), e.g. a datatype's de�nition, a bu�er de�nition, etc. Versions may be maintained by using RCS. Toolsare also available to facilitate the building of con�gurations, for which the one general tool isMake[Fel79]. There is also some support in LITE: for instance, a simulation option invokesa make�le which checks syntax, semantics and translates a LOTOS text speci�cation intoa CR for use in SMILE.3.6.3 Risk ManagementProviding safety integrity comes from risk management ('RM' for short), for whichkeeping a sensible record is part of the process. All this information can be maintained ina Risk Management Summary (or RM log), which is standard practice for giving a writtenaccount of risk. Such practices are generally required in any software project management.In our particular safety-critical context, we consider the RM Summary used for PEMS asdiscussed in [Bib95] and given below (Table 3.1).Baseline < n >Branch: < a1, a2, ...>Hazard Baseline Hazard & Risk Requirement Requirement Veri�cation RFUNo. Entered Cause [Method of Reference & ValidationControl]Table 3.1: A Risk Management LogWe conceive the RM Log as consisting of a tree of logs, corresponding to the tree ofbaselines, so the logs are updated each time there is a baseline increment along the branch.At any given moment, there should be 'in circulation' a set of logs such that all branchesin the development are accounted for. The remaining (previous) logs should be kept forfuture reference. Hence it would be useful if the RM Log itself should be placed underversion control. The format of individual logs, which correspond to nodes in the baselinetree, reects safety, the use of formal methods, and the use of CM management framework.In general, developing a record for risks for non-formal items is fairly well under-stood. However, there appears to be little material that even asks whether or not formalitems may need special requirements. In response, we �rstly assert that formal items morethan any other require traceability, otherwise proofs cannot be justi�ed. Hence, we con-sider here the RM Log's feasibilty for supporting formal models in this way, though only

83briey. Much depends on what tool support can be provided; in particular, the use ofhyperlinks could open up the use of graphical representations such as SSG's, thereby aidingtraceability.Notes and Recommendations regarding the Risk Management Log� The entries under hazard & cause should consist precisely of all those hazards iden-ti�ed in the hazard analyses as having a bearing at baseline depth n. In our formalcontext, we start with an abstract system in which properties may be deemed to hold'vacuously' until explicitly mentioned provided that there is some record kept thatindicates the level of (in)completeness. The measures for these can be expressed interms reecting the de�nitions in Section 3.5.2.1.As the re�nement proceeds, whenever additional hazards are revealed they should beadded to the log. They will typically become �ner in level of granularity.� The Baseline entered is to provide a record of when hazards were identi�ed, in termsof the stage of development (baseline depth) { '0' denotes those hazards determinedin the initial hazard analysis. The aim of this is to give insights into the kinds ofproblems which can 'crop up' unexpectedly, and at what stage.� This column gives summary descriptions. More than one Requirementmay be elicitedfor a single hazard, with the option of making explicit a Method of Control { whichcan be omitted when the overall design is expected to ful�l the requirement. Notealso that the same Method of Control may be employed for several hazards, but theveri�cation and validation need relate only to the 'Cause of Hazard'.� A particularly important feature of the log in our development is the need to ensurethat properties relating to verification & validation continue to hold during sub-sequent changes. Consider, for instance, that a hazard is identi�ed in baseline 1, whena corresponding property � is formulated that a model S1, say, must satisfy. Then werequire validation of S1 j= �. Suppose that for subsequent baselines, we have a suc-cession of models S2, S3, ... Then we would validate that � continues to hold throughveri�cation of S1�1S2, S2�2S3 and so on for suitable relations �1; �2; :::. Thus, thevalidation and/or veri�cation which justi�es the integrity of the method of controlshould be given special attention; this column should contain:{ a (detailed) natural language statement of a desired property{ the formalisation of the property

84{ description of steps in the formal proofs, with references to Lemmas and Theo-rems used (usually given in appendices or other documentation such as technicalreports){ Some veri�cation may be dependent upon previous results. If so, these depen-dencies (which may be of several types) must be stated clearly.This column can be conceived of as a matrix in itself with the number of columnscorresponding to the number of formal justi�cations required. Ideally, methods ofcontrol should always be proposed hand-in-hand with a plan for veri�cation. Theintroduction of a method of control may be considered as some transformation. De-pending on whether or not it is a sequence (or composition) of CPTs, its veri�edstatus may or may not continue to hold; if not then some proof is required and therisk management logs should be updated, indicating the extra proof required underthe change. This applies for all subsequent changes. The outcome of this in terms ofthe risk management log is a matrix of measures.3.7 Observations and ConclusionsIn this chapter, we have re-capitulated the general impression that the uptake offormal methods in industry is poor. In trying to discover some reasons for this, we haveidenti�ed a number of weaknesses on the part of the formal approach, most of which stemessentially from the lack of integration into wider software development practices.In response, we have provided a safety-oriented framework based on systematicconsideration of the amenability to formalisation of each of the stages in the standardSafety Lifecycle Model. This has raised many open issues, many of which will have to beanalysed in greater depth. Here, our main concern is changing the shape of the developmentin such a way that the formal cornerstone of proof is made widely useful: a consequence ofour activities is that to reect the particular needs of the re�nement, the tasks of veri�cationand validation have been given more attention.In so doing, the process has drawn attention to the fundamental issues of consis-tency and completeness. Producing safety-critical systems requires a number of stages, eachof which ought to satisfy some form of completeness. It appears that in order to ensure ultrahigh integrity, there needs to be a systematic treatment of completeness at each step. Inthe face of such a situation, the levels of dependability that have apparently been achievedwithout formal methods is remarkable.

85This has been particularly evident in the treatment of basic safety concepts suchas hazards. A broad framework has been de�ned that provides some measure in the abilityof individual formal languagese to capture notions of hazards and their relationships. Fromthis perspective, it is clear that for a language to model requirements completely is aconsiderable task. However, consider that embedded systems are built using electroniccomponents, whose behaviour certainly can be modelled formally. If there is con�dence inthe completeness of such embedded systems (dependent on whatever), then this indicatesthe potential completeness of a formalisation. In traditional engineering, con�dence hasoften come from experience. However, as the dependence on software increases and systemsincrease in novelty and complexity, completeness will have to be more part of the designfrom conception, for which formal methods seems the most likely candidate.Some of the special emphases and modi�cations are summarised in the lifecyclemodel given on the lefthand side in Figure 3.3, which splits the development process intothree major phases with internal stages (or sub-phases). For this model, we have taken eachstage and established the relationship with the formal development, given as the dottedarrows from left to right: the thicker arrows indicate a dependency, whilst the thinnerarrows indicate a weaker relation of acting as guidelines.The model that is presented in Figure 2.3 assumes a stable environment, in whichonce requirements are determined, they remain �xed for that stage in the development andany modi�cations, additions or re�nement happen further into the development. A moregeneral and realistic model would provide for corrective changes to requirements establishedpreviously. These changes may be identi�ed with respect to the stage in development byreference to the RM Log, speci�cally the baseline and branch; new CM items can be createdaccordingly. The extent of the impact will depend on the location of the divergence fromlatest requirements. Any change to requirements, just like an error in initial design, has tobe 'rippled through' the stepwise designs from the point of divergence. If the nature of theproposed system is such that it is prone to frequent major changes in requirements, thenthe system may be ill-conceived.Coping with these changes is di�cult, so this makes it essential that user require-ments are established, understood and agreed upon as soon as possible. To this end, SoftSystems Analysis [Che81], preferably with formal support as being researched presently[BL95], may be useful to ensure that what the customer needs is clear. However, for somesystems the factors which inuence the safety integrity levels are very much subject tochange depending upon the external world. Providing high integrity for these systems is aneven tougher challenge.

86
Identify Hazards

structure hazards and
causes; analyse

Assess risks
for each cause

Establish Functional
Requirements

Specify Integrity
Requirements

Establish Baselines
structure

Formalise hazards

Formalise relations
between hazards; analyse

For each cause
assign a valuation

Functional requirements
of specifications

Define valuations
of proof types

Define tree structure
semantics

Relate items in the
tree

Design, Implement
and Verify

Plan validation -
Manage Risks

Refine specifications,
verify consistency
and validate properties

Specify methods of
control Formulate methods of

control as requirements

Figure 3.3: The Lifecycle Model and its bearing on the formal re�nement

