
87Chapter 4The provision of safety requirements from faulttrees and their validation in formal modelsIn this chapter we address the problem of how to link directly standard safetyanalysis techniques with formal software models that are being re�ned towards implemen-tation. Here, we focus on one of the most popular techniques { fault tree analysis { anddetail within a formal framework the derivation of requirements from fault trees and theirincorporation in system models. A common semantics basis of labelled transition systemsis chosen, thereby avoiding extra di�culties involved in translations.To come closer to industrial practice, we provide a procedure that allows muchindependence in the activities of building the fault tree, generating requirements and thenrelating them to models. Further scope is provided through a number of consistency rela-tions to re
ect varying levels of satisfaction of requirements needed at di�erent stages indevelopment. This overall 
exibility allows the system builder to derive a series of mean-ingful results, based upon a gradual and rigorous re�nement of a formal model.As described in the previous chapter, there has been ongoing work in require-ments capture, with the use of formal methods to sharpen the analysis, but the problem of'threading through' the results to formal models has hardly been treated.4.1 The use of FTA for softwareFault Tree Analysis (FTA) has been accepted as a very useful part of safety analysisfor the engineering of safety-critical systems in general { they are part of 'best practice', astock-in-trade tool. A de�nitive guide to FTA, to which we refer frequently, is the FaultTree Handbook [VGRH81].During the past decade or so, these techniques have also been found useful in



88analysing critical aspects of systems to assist in the production of safety-related software.In particular, a technique called Software Fault Tree Analysis (SFTA) has been developedto analyse critical code. In [LH83], there is a general discussion of this approach and thenexperiences are reported of its application to Intel 8080 Assembly code that was used forcontrolling the 
ight and telemetry of a space craft; this project is described in more detailin [Har82]. SFTA has also been applied to ADA programs [LCS91].In common with the production of most software of a critical nature, such tech-niques may be enhanced by the use of formal methods which can remove ambiguity andinconsistency and generally increase con�dence in the safety of the design and subsequentimplementation. In the following sections we provide a summary of the technique and thenreview the use of FTA for software, discussing how formal methods can help assess (andthen justify) its suitability.4.1.1 Summary of the techniqueIn the safety lifecycle model, the initial stage consists of identifying hazards at asystem-wide level. FTA is a technique that provides an iterative means to determine theevents or fault (hazard) causes that lead to a top-level fault, an event which is identi�edas posing some serious risk to the safety of the system. These events are deduced usingwhatever brainstorming techniques are available, so FTA may in the process prompt thediscovery of further hazards at a wider level. Depending upon interpretation, a problemwhich is treated in section 4.2, FTA's may encompass a number of aspects. The threemain ones are: causality, where one or more hazards may be su�cient or necessary tocause another one; temporality (event sequences, where a particular chain of events canlead to a hazard); and composition (a hazardous item may be hazardous due to one of itscomponents).FTA takes a top-down view, starting with those hazards which are visible to usersand successively decomposes and/or works backwards to previous causes. In so doing atree structure is formed { a fault tree { whose nodes are events. It is possible for this tobe an in�nite sequence, so at some stage, one must decide to halt the process, therebyarriving at primary events, which for the purposes of a particular fault tree are the rootcauses (temporal and structural). These root causes are represented as leaf nodes. For eachbranch in the tree, the type of choice is indicated by a logical combinator such as AND or ORdepending upon the relationship between an event and its contributing causes. Fault treesmay be constructed in stages, so an initial tree may include some behaviour of the softwarewithout incorporating any methods of control. As the model is re�ned, the fault tree may



89

Figure 4.1: Part of Fault Tree Analysis for a remotely controlled robotbe expanded to account for the controlling mechanisms.We now proceed to describe in more detail the process of constructing trees. Thereare a number of useful concepts that have emerged from industrial experience over two orthree decades in the process of enlarging (or elaborating) the fault tree. We summarise theones given in section V of the fault tree hand book and illustrate some of these conceptsusing an FTA for a robot controlled remotely via some cable, as shown in Figure 4.1. Wealso make a few observations concerning interpretation issues, which we discuss further insection 4.2.The method starts at the top level fault and recursively seeks to generate causesas far as is deemed necessary. Thus the proper selection and de�nition of events is essentialto the construction of an appropriate tree.Thus the �rst ground rule (section V.7 of [VGRH81]) is:Write the statements that are entered in the event boxes as faults; state precisely



90what the fault is and when it occurs.The events are the building blocks for the trees and may be variously classi�edinto di�erent types. Below is the classi�cation in [VGRH81] (where events are termed faultsif they are initiated by other events and failures if they are basic initiating events).� The rectangle indicates an event to be analysed further� The circle indicates a basic fault event or primary failure of a component. It requiresno further development.� The house is used for events which normally occur in the system. It represents thecontinued operation of the component, and its probabilty is the reliability of thecomponent.� The diamond is used for non-primal events which are not developed further for lackof information or insu�cient consequence� The oval is used to indicate a condition. It de�nes the state of the system that permitsa fault sequence to occur. It may be normal or result from failure.� The AND gate serves to indicate that all input events are required in order to causethe output event.� The OR gate indicates that one or more of the input events are required to producethe gated event.Note that not all events in the tree are faulty by themselves { those of the type'house' may act simply as propogation media under normal operation.The second ground rule helps the elaboration of the tree through determining theappropriate type of gate from information about the state of a fault:If the answer to the question "Can this fault consists consist of a componentfailure?" is "Yes", then classify the event as a 'state-of-component fault'. If theanswer is "No", then classify the event as a 'state-of-system' fault.For a 'state-of-component fault', the handbook advises adding an 'OR'-gate withinputs being components that can cause the fault.For a 'state-of-system fault', the handbook advises looking for minimum necessary,su�cient and immediate causes using any of the gates.



91In order to state precisely what a fault is, there are a number of aspects and issueswhich are described in [Ves81], sections V.1{V.6:(i) Fault Existence vs. Fault OccurrenceSome faults may be transient, in which case a distinction should be made betweenfault existence and fault occurrence since, in particular, this has a bearing on determiningprobabilities of faults. For instance, in Figure 4.1, the event 'cable is damaged' will remaina fault unless dealt with; however; 'Loose connection' may be a transient fault.However, for the construction itself, the handbook advises "we need concern our-selves only with the phenomenon of occurrence." That is to say, we explore what eventsmay occur and treat likelihoods later.(ii) Passive vs. Active ComponentsIn most cases it is convenient to view components as either 'active' or 'passive':� 'active' components trigger events or event sequences (examples include relays, resis-tors, pumps, and various control mechanisms)� 'passive' components act as propagation media (examples include pipes, wires, bear-ings, etc..)Passive components may lie between two active ones, though this ordering mayor may not be re
ected in the tree: for example, in Figure 4.1, there is the event " `stop'command ignored". The fault may have been caused by the robot, in which case, theoccurrence of the fault is actually dependent upon the transmission media, which acts apassive component. Here it is included as a house event "Instruction transmitted throughchannel", which site next to "robot fails to interpret correctly `stop' command".(iii) Component Failure Categories Fault occurrences may be categorised as:� Primary: fault occurs in the environment for which the component is intended tooperate normally, e.g. the top-level event of Figure 4.1.� Secondary: fault occurs outside the environment for which the component is intended� Control: fault occurs because a component operates properly but at the wrong timeor wrong place etc.(iv) Failure mechanism, Failure mode and Failure E�ectThese concepts are important in determining the inter-relationship between events



92� "e�ects" - why the particular failure is of interest - what are the e�ects on the system?� "modes" - what aspects of component failure are of concern.� "mechanisms" - how a particular failure mode can occur. (the above mode has mech-anism 'loss of data across link' and 'lossy channel').For example, in Figure 4.1 the event "cable is damaged" is a failure mechanismfor the mode "Physical Fault in hardware channel".(v) The 'immediate cause' conceptThis is a general view on relationship within gates between inputs and outputsand has been subject to criticism when formally analysed.Once a top level event (in Figure 4.1, viz: 'robot arm swings to angle beyondnormal range') has been selected, the immediate, necessary and su�cient causes for itsoccurrence are determined. The immediate causes are those events which occupy a placejust in front of the top level event - whether physically along side (or part of) or immediatelypreceding in time.These cover the essentials of fault tree construction, as recommended in the FaultTree Handbook. A few further rules are mentioned as the result of the experience of safetyanalysts:1. 'No Miracles Rule': If the normal functioning of a component propagates a faultsequence, then it assumes that the component functions normally.2. 'Complete the Gate Rule': All inputs to a particular gate should be completely de�nedbefore further analysis of any one of them is undertaken.3. 'No Gate-to-Gate Rule': Gate inputs should be properly de�ned fault events, andgates should not be directly connected to any other gates.4.1.2 Using formal methods to assess the suitability of FTA for softwareWe start this section with some motivating discussion for the use of FTA forsoftware (the same considerations may also be applied to other safety analysis techniques).We may ask, especially with respect to the delivery of systems with safety-related software:How e�ective or faithful is a fault tree at capturing hazards or faults a�ecting software?Does FTA support adequate analysis?



93Since computers generally operate according to deterministic physical laws, muchdepends on two factors: the ability of the safety analysis to be able to account for suchdeterministic behaviour and a facility for safety requirements to be consequently generatedand reliably implemented in the software. Experiences as reported in [LH83] indicate thatFTA can prompt the discovery of hazards and faults that escape other techniques. As partof the conclusions in that paper, a number of salient qualities of FTA emerge including:� the encouragement of a focus on catastrophic events� the provision of a systematic approach for the consideration of the causes of theseevents� the convenient storage of information.Even so, FTA may not be the most suitable technique for software. Indeed, re-searchers at the High Integrity Systems Group at the University of York, have focusedattention on software structures and found that fault trees may become very large andunweildy. They have concluded that some adaptation of FTA and FMECA is required,resulting in the suggested Failure Propogation and Transformation Notation (FPTN) toovercome some limitations [FJMP94]. However, it may be noted with regard to the prob-lem of fault trees burgeoning in size, that targeting speci�cations more than program codeand making use of abstraction can be of considerable help.Although some alternative to traditional FTA may well be more e�ective, it isworth considering beforehand the issue of what we mean by fault trees. Only then do wereally know the extent to which FTA is e�ective. A precise understanding of fault treesrequires the use of formal methods; only recently have they been used to address this issue,yet there have already been some signi�cant �ndings. It should be noted their use dependsupon capturing "as best as we can tell" the informal tree, i.e. a process that requiresvalidation.When FTA has been put under the spotlight of formal methods, there have beenrevealed ambiguities and inconsistencies in possible interpretations that were previously notknown. It is shown in [BA93] that a given tree can reasonably be expected not to havethe required properties according to the interpretation recommended even in [VGRH81]. In[BCG91], it is mentioned that there is an inconsistency between de�nitive sources regardinginterpretation of gates. As an answer to these two problems, in both papers it is suggestedthat the user has to choose carefully between a number of interpretations depending uponthe context. In this way, the formal analysis enables one to make informed suggestions



94regarding the conventional interpretation of trees and the consequences for software. Amore detailed discusssion of interpretation problems is given in Section 3 of [G�94].Formal reasoning is also desirable beyond the locality of individual events or gates,to clarify, for instance, what are common failure modes and component structures. This isimportant when requiring some quanti�cation of risk through the calculation of probabilitiesfor e.g. minimal cutset forms (or some derivative). This work is even more in its infancy,with one or two notable exception such as [GMW95], where formal analysis is conductedmainly to establish under what timing constraints a top-level hazard can actually occurfrom the lower level events. This is but a small step to determining the e�ect of a givenhazard on the reliability of a system, in which it may be di�cult to know to what extentevents at di�erent parts of the tree are independent.However, putting aside problems of interpretation, the use of formal methods inthese papers have supported the case that wide-ranging safety-related aspects of softwaresystems can be captured using FTA as a safety analysis technique and, further, the outputof the analysis can be formalised. There is still plenty of scope for establishing the usefulextent of such analysis with the need to provide more examples. This may well con�rm theneed for 
exibility in how a Fault Tree can be interpreted (and in turn re�ne the currentapproaches to formalisation, re
ecting the 
exibility). In general, as we hope to show inthis chapter, fault trees serve as a very useful basis for generating requirements.Since a fault tree has such wide scope, a further important question arises: \Whatare the criteria that make a formal fault tree faithful to the original FTA? How do we ensurefaithfulness?" As hinted above, this is a subjective matter, open to personal interpretationand so requiring validation. The criteria should include some notion of completeness { i.e.every part of the informal analysis should be accounted for and, preferably, there should alsobe simplicity. This may be facilitated by having procedures both for formalising the elementsof a tree (the events) and for constructing trees. An algorithm for event formalisation isgiven in [GW95], but there has not yet been stated a procedure for trees. We provide sucha procedure in this chapter. We then need to derive software requirements based on theformal FTA and show that they can be usefully applied to a formal model. This is achievedusing a common semantics basis on which are de�ned some relation(s) between faults andsystem models, interpreted over transition systems. In this chapter we use the semanticframework provided in [BA93]) that are to underpin our new relations de�ned in section 4.4.



954.2 Semantics of fault treesThis section reviews brie
y the key elements for interpreting fault trees.There are two fundamental semantic notions which are used to make up a tradi-tional fault tree:1. an EVENT2. a GATE which relates events.Instances of events represent faults or hazards and are the building blocks for thetrees. The �rst issue to address is how we regard events: either we regard them as atomic,i.e. indivisible in some sense, in which case we can give them a simple denotation; or asnon-atomic, i.e. they may be expressed in terms of simpler elements.In the case that events are not atomic, we need to be able to reason about them.Doing this formally requires the task of event modelling. Work based on the CSDM model[BCG91, G�94] has provided a formal semantics with explicit timing notions; an extension ofCSDM, ECSDM adds a state-based system representation for events in the manner of VDM[Jon90] and an algorithm for event construction [GW95] (which provides some examples ofthe procedure). A supporting task is the classi�cation of events into di�erent types, forwhich one approach is based on the role of an event in a particular tree, as cited above,following the Fault Tree Handbook. Other classi�cations are based on the position of theevent in a tree [G�94]; and on the structure of an event [GW95].In this chapter we wish to provide a very general framework and thus do not makeexplicit any particular event model. In some cases we may model an event at a low levelof granularity and then use appropriate abstraction to follow [BA93], in which events areformalised as atomic propositions which are interpreted as sets of states. The view chosenshould re
ect the context, but generally we do not impose the requirements of atomicityand this is re
ected in some of the de�nitions which omit mention of atomicity.Relating the events to each other formally requires a precise notion of the meaningof a gate. As a general rule, one chooses semantics appropriate to the real-life situationbeing analysed and modelled. As a starting point, one can look to informal notions: onetraditional interpretation of gate semantics is propositional, i.e. at any gate, event causes areimmediate, su�cient and necessary (stipulated as the 'immediate cause concept' in sectionV.6 of [VSGH81]). In this case, duration may be incorporated in the events themselves andtemporal sequences modelled by a chain of events at successively deeper levels in the fault



96tree. However, it is far more natural to allow temporality between events. Using Figure 4.1as an illustration, we may draw out the following sequence of events that lead to the hazardof a robot arm swinging out of control and possibly hitting someone:1. The communications wire is frayed as a heavy object falls on it [this latter is itself anenvironmental fault cause to be part of the fault tree]2. A communications fault develops [due to physical degradation] and goes undetected3. A certain instruction given to the robot arm is initiated and subsequently cannot bestopped since there is a fault in the communications.4. The robot arm swings without control and hits someoneWe may observe that event (2) may or may not occur immediately after event (1).However, it is likely that there is duration between events (2) and (3). Further, in the tree,event (2) may be modelled by an AND gate with two input events (viz 'communication faultdevelops' and 'communication fault is undetected'). In reality, the detection of the faultmust occur after the fault arises, so these events do not happen simultaneously. Thus, apropositional semantics applied to the tree derived from this fault sequence would have touse a number of unnatural squeezes, but may still be inadequate since some events mustsatisfy temporal relationships with others { which cannot be cleanly encapsulated in any oneevent. The Fault Tree Handbook does de�ne 'conditioning events' which tack on conditionsto gates, including the 'Priority AND' gates which would be able to specify the temporalconstraint of one input occurring before another. However, realistically this should carryinformation about duration, which would imply temporal semantics.In response to the awkwardness of propositional semantics in such scenarios, Brunsand Anderson have introduced both a temporal logic and a propositional logic gate seman-tics; the former has a simple structure for which \We assume only that a system model canbe represented as a transition system or as a set of sequences of states." This approachis readily applicable to a variety of application domains since it does not impose big re-strictions on the event structures. However, in view of the fact that some guides such asthe Fault Tree Handbook have become somewhat de�nitive, the introduction of temporalsemantics to supplement or replace the propositional semantics needs more justi�cation,e.g. through case studies with speci�c examples which can only be modelled in a temporalsemantics.G�orski et al provide in [BCG91] a detailed event model and temporal gate seman-tics as part of a Common Safety Description Model (CSDM). The former provides useful



97information on how safety analysis techniques can be formalised in a way that is true to theoriginal intention. This is further supported by an algorithm to generate formalised eventsbased on the CSDM model and provides a classi�cation of typical event classes [GW95].But it is only one model { there are bound to be alternatives whose relative faithfulnessmay be assessed. As the range of e�ective applications of FTA is large, then it is likely thata number of distinct event models are required to cater for each of them.Once event and gate semantics have been established, the fault trees themselves areinterpreted in terms of the gate conditions { for instance, if the conditions are propositions,then the tree can be interpreted as their conjunction.4.3 Constructing Fault trees and deriving safety require-mentsIn this section we combine the activities of constructing fault trees with the deriva-tion of requirements.4.3.1 From FTA to safety requirementsAssuming the foundations for development, as provided in Chapter ??, section 3.4.1,safety requirements may be systematically derived from FTA. To recap, once the risks havebeen determined for the various hazards, requirements are generated to provide integrity,which in turn is achieved by methods of control. The requirements will usually be directedat a selection of hazards, which may be tackled directly or indirectly. Hence, decisions haveto be made regarding for which hazards one plans to introduce methods of control and where{ trying to prevent a hazard and all its causes would be super
uous. As an example, indata communications, error correction could in theory take place at many di�erent points,but usually it is targeted for speci�c stages or levels.A solution of this problem requires understanding through various analyses howevents may combine to lead to a hazard. It must appeal to the context of the particularevents, informed by the representations of the hazard structures and system models respec-tively. As described in section 3.5.2.2, the main role of fault trees is to provide a usefulbasis to reason about hazards. In particular, they enable the analyst to determine whereto introduce or apply methods of control. Here we present some guidelines for this activity,based upon consideration of the fault tree, which we assume has some formal representation.First, one may observe that in any fault tree it su�ces to cut a line of hazards



98right across all branches (or their trunks) in the subtree that stem from the node for oncesu�cient hazard causes are removed, the hazard ceases to arise. In deciding where to cut,the next step is to consider the hazards themselves. Given the informal identi�cation of areal hazard, how do we �nd the appropriate method(s) of control in the formal domain?In a formal model, we need to account for two aspects concerning the tree ofhazards. The �rst is static analysis in which one examines the structure of the tree'srepresentation, where one of the main techniques is to try to use decomposition in such away that proving a property of a number of components enables proof of a property about agreater system. If an individual component's behaviour is too varied, then a higher level ofabstraction should be used that takes into account it's interaction with other components.Decomposition may be attempted with respect two aspects: the system and the properties.In our example fault tree, we have that there may be a data corruption fault in the system.Decomposing the system reveals that it lies in the upper level link interface; further, theactual property which makes this system hazardous may be stated as an _ (or) composition{ whose components are properties about where and how it is corrupted.The second aspect is dynamic analysis and concerns the temporal ordering orsequence of events that may lead to a certain hazard { it is possible that an error in thedata link layer may lead to the corruption of patient data, yet operate reliably again beforethe corruption is detected. This indicates the delicate interplay between actions and states,which formal models need to capture. Ideally, there should be tools that simulate anybehaviour possible in the tree.As a general rule of thumb, following the philosophy that prevention is betterthan cure, one may choose (as here) that the hazards initially selected are leaf nodes; thensuccessively move up the tree only when an appropriate method of control cannot be foundfor a given hazard.4.3.2 Veri�cation and ValidationFormalisation of safety analysis, to reveal the ambiguity and inconsistency to which{ like any other informal process { it is prone, is only established through the activities ofveri�cation and validation. Safety requirements also bene�t from formalisation, and canbe treated as objects which form part of our design activities. The formal models whichincorporate these requirements in the context of their re�nement towards a full softwareimplementation are also objects in this process.The tasks of veri�cation and validation are both central to our formal treatment



99veri�cation validationsafety analysis prerequisite: formalise safety analysis (e.g., fault trees)check consistency of the check that the formalisationinternal components is a true re
ection ofin the analysis informal analysisanalyse, using information fromthe veri�cation, to cast lighton the safety analysissafety-related prerequisite: derive safety requirements from the formalformal model safety analysischeck consistency of the check that the model is a trueinternal components of re
ection of the requirementsthe model in the requirements de�nition,including conformance to safetyrequirementscheck that the re�nements analyse the model to castduring the design process light on the requirementspreserve behaviour and de�nitionpropertiesTable 4.1: Veri�cation and Validation with respect to Safety analysis and Modelsof the safety analysis and the model in respect of its satisfaction of the safety requirements.Again, they are conducted separately: Table 4.1 indicates where veri�cation and validationactivities feature for the respective activities.4.3.3 Motivation for an iterative approach to constructing fault treesIn this section we discuss the construction of fault trees and argue the need for aniterative approach { a novel method that is described as procedure FTBuild in the nextsection. It is desirable that the overall process of constructing fault trees should not im-pose any restrictions which may prevent the discovery of hazards or faults. Accordingly,initially we do not impose any (formal) constraints on the relationships between eventswhilst constructing the tree (c.f the discussion of FMECA in [VGRH81]).It is, however, useful to examine formally at intervals what one has done so far:



100
Fault Tree 2

Model 2Model 1

Analysis

Fault Tree 1

Model n

AnalysisAnalysis

Fault tree n

Informal FTA

FORMAL MODEL

formalise
and relate

requirements

refine refine refine

expand expandexpand

formalise
and relate

requirements

formalise
and relate

requirements

Figure 4.2: An incremental model for concurrent FTA and model re�nementthe longer a fault tree is built up with no formal consideration, the greater is the potentialweakness of events and their interactions being subject to ambiguity. Determining theappropriate semantics at just one gate can be a non-trivial matter, so if one extends theconsideration to events not immediately related, then the situation is potentially much morecomplicated. Leaving the formal analysis to later may be uneconomical: an extreme casewould be the generation of many complex fault trees, where the formal examination of the�rst one reveals some inherent weakness in the system conception, necessarily requiring itsalteration and the modi�cation of all the other fault trees.In view of the potential pitfalls we suggest the construction of fault trees as aniterative procedure of constructing together informal and formalised trees, tied to the de-velopment of a model of a system or some part. This is illustrated by Figure 4.2, which isan instantiation of the generic incremental model illustrated in �gure 2.3.In this way, the formal analysis of the model plays a more integrated role in thesystem design. The procedure retains the freedom to explore faults informally, with norestrictions on the causes. However, once some particular gate condition is developed, itmay be formalised, validated with respect to user requirements and these requirementsfurther analysed in light of the formalisation, before continuing the brainstorming activityof searching further down the tree. The advantage of this method is that before a largetree is developed, it may be quickly realised that some faults are intractible (cannot beavoided or tolerated without adverse e�ects) and may thus cast light on some de�ciency or



101over-expectation in the design. (For instance, some part of the system might require moreautomation instead of a human operator). If this eventuality is reached, then the conceivedsystem may be changed and the fault tree modi�ed accordingly.Note also that this procedure allows for a model to be developed separately fromthe fault tree analysis { one simply keeps skipping step 6 given below. It has been standardpractice for models to have been built separately from such safety analysis, largely to meetprescribed functionality. Only then have they been validated a posteriori for safety-relatedproperties, which in many cases have not been derived from any systematic safety analysis.In any case, if a model is fully developed without incorporating faults, it can be so complexthat the late addition of faults may be di�cult to treat, no matter how good the safetyanalysis. We have argued elsewhere that such a post hoc approach is inadequate for ensuringsafety [TN96].As indication of the generality of the method, we indicate how the work of G�orskiand Wardzi�nski �ts in the framework.4.3.4 Procedure FTBuild for fault tree constructionThis procedure FTBuild builds the fault tree in broad and unrestricted fashion,allowing its selective formal analysis both as a tree and in terms of safety requirementsincorporated in one or more models.Given an informal statement of user safety requirements, part of USER-REQS,together with a requirements de�nition SYS-REQS for the conceived system plus somemodel(s) of the system or part, FTBuild is de�ned as follows:1. Select an informal fault (event) E.2. Establish (informally) all [or some of ] E's event causes { E1; E2; :::; En. If there areno causes then E is a leaf node and FTBuild is completed. This is perhaps the mainbrain-storming activity, really an exercise in HAZOP.Attempting to �nd all the causes is advised, to be in accordance with the 'Completethe Gate' Rule.3. Formalise E { choose an event model and semantics; express this as some predicateand validate.4. Consider the relationship between the eventsE1; E2; :::; En as regards their causing thefault. (Note that not until all causes have been found will a relationship be complete).



1025. Formalise the relationship as a gate condition, a predicate formulated in some logic,with semantics chosen accordingly (and validate).6. (optional step)(a) formalise the whole tree and perform analysis (optional)� If the formalised fault tree implies some poor informal safety analysis (e.g.some inconsistency, as discussed in the next section), then this analysis needsto be re-addressed, whence the procedures involving all those parts of thetree's construction a�ected by the changes have to be terminated and re-invoked.(b) derive safety-related requirements for the given model based on the formalisedgate conditions and events.(c) incorporate the safety requirements in the model and analyse both the suitabilityof the tree and to what extent the model takes account of the requirements {which we call property conformance (abbreviated henceforth as conformance)of the model. Assuming that the FTA has been validated formally, or is simplytaken as OK, them the following scenarios are possible as a result of the analysis:i. the design appears okay, but the model is inadequate, so the model needs tobe modi�ed { the next step taken depends upon how the model is changed.(If the model cannot be modi�ed in the desired manner, then it may be thatthe modelling language is not appropriate).ii. the model indicates that the conceived system is inadequate (so FTBuildmay have to be abandoned until this is modi�ed)iii. all is okay, so carry on with step 6d(d) (optional) Re-iterate step 6c for other model(s).These may be alternative models, perhaps prototypes, to be compared; or are�nement, which can provide information for the expansion of the tree.7. For each Ei, perform FTBuild from step 2 and then END.The bene�t of this approach is that the fault tree is built up in a rigorous fash-ion. One may at any time halt the construction of the tree and concentrate on derivingrequirements and/or mapping them to the model.As indicated, reasoning about the model may lead to reconsideration of the systemconception, without need to examine the fault tree further. This interactive approach shows



103the need for the formal analysis as part of the requirements analysis for system design. Also,the analysis of the model in the light of the safety requirements may uncover new faults.Further contributions to the expansion of the fault tree may be expected as the model isre�ned towards implementation.It is probably best to do the analysis of the fault tree in two stages: �rst, analysethe tree for its own sake (step 6a), not least because of computational concerns; next,analyse further when incorporating in the model (step 6c). The requirements for these aredi�erent: for instance, we may expect the formal examination of the safety analysis per se totreat all the events and gates found in the tree. This may mean evaluating the conjunctionof predicates of events and gates, sometimes called the characteristic predicate, to check forconsistency. This is likely to be not too heavy on resources. In contrast, we may not expectto perform so easily the same evaluation for a model, with a very much larger structure, sowe would need to be selective here about the events and gates we focus on.Work that has been undertaken in the CSDM can be seen to be contained withinFTBuild as follows. An algorithm for the formalisation of an event (step 3) has been givenin [GW95], steps 4{ 6a have been treated in [BCG91, G�94]. Some analysis of a formalisedtree (step 6a) has been covered in [GMW95] and the derivation of safety requirements hasbeen examined in [GW96].4.3.5 Issues in the analysis of formalised fault treesThe analysis of formalised fault trees raises many issues, some general, others tobe considered in the light of a speci�c tree developed as far as step 6a of FTBuild .1. consistency: a tree has traditionally been de�ned inductively through gate conditions(a procedure we follow), which treat relations only between inputs and their imme-diate output. However, we require in addition to such local conditions the overallconsistency of the system. A simple form of consistency relation has already beenmentioned: just take the conjunction of the propositions corresponding to gate con-ditions. If such a predicate is always false then we regard that as an inconsistency.Such inconsistency may arise if, for example, one gate condition imposes certain con-straints on the location of some hazardous object X , whilst another gate conditionmay impose other constraints which imply that X is in two places at the same time.In this case, the safety analyst should use, if available, past experience to clarify ifand when such events can occur.



104Thus the formalisation of just such informal conditions can be valuable in highlightinginconsistencies in the process of constructing an informal Fault Tree. One may usea partitioning scheme according to a particular viewpoint { e.g., using abstraction,one can examine both horizontal and vertical consistency in addition to notions ofcompleteness de�ned in section 3.5.2.1.2. uniqueness: for a given top-level fault or failure mode, how do we distinguish betweenpossible fault trees? Given a tree containing events that are specifed as known plustoken events, in those cases where there is lack of information about causes, is theresome unique maximal tree?3. completeness: to what extent can we say a tree is complete? Can we say that for someevent, there are no further causes?Using the notation of the Fault Tree Handbook, we may say that a tree is syntacticallycomplete if all its leaf nodes are primary events; it is syntactically complete 'up to thelevel of information' if instead, the leaf nodes may also be diamond events. In general,we cannot say whether we have a complete set of causes for a given event.4. abstraction: some faults are visible to users in the environment, but others lie hidden,deep in some component. Handling all these together would be complex, so it isdesirable to use abstraction to distinguish between (possibly classes of) events. If so,how? What are to be the bases for abstraction?5. computation of risk: for propositional semantics risk is computed using minimal cutsetforms but, as we have seen, this obscures durational aspects. Assuming a more realistictemporal semantics means that one can no longer in general apply this technique,as certain laws in Boolean Algebra no longer apply (see, e.g., CSDM examples in[BCG91]). In such cases one must determine alternative methods for calculating risk.In [GMW95], formal analysis has been performed by mapping trees expressed inCSDM to corresponding representations in Time Petri Nets. In particular, reachabilityanalysis is performed to show whether or not a hazard may arise from the given fault tree.It is reasonable to expect that a similar mapping could be performed to a language basedon transition systems.4.3.6 Generating safety requirements from fault treesThe procedure FTBuild generates in steps 2{5 events and gates as input to thesafety requirements. Having formalised and analysed the fault tree, at step 6b we have to



105formalise requirements for events and gates, which we view as a two stage process:1. determine which events and gates are to be used in conditions2. determine as maps with respect to the chosen events and gates the (nature of) theconditions which we require that the model should satisfyFor substep 2, we may choose as a mapping, one that simply maps events andgates to either themselves or to their negation, re
ecting the following statement in [GW96](part of STEP 4 in the Method Description):\ ... the hazard can be prevented if, throughout the system operation, thesoftware maintains the negation of the whole condition"We may use the following simple decision mechanism to implement this:For those events (faults) and/or gates as speci�ed which lie outside the control of thesoftware being developed from our model, we stipulate that these conditions shouldbe satis�ed by the model as they stand (i.e. that the model is fault tolerant). Forinstance, such is the case for events of the kind, `physical component wears out'.For those events and/or gate conditions which lie within control of the software beingdeveloped from our model, we stipulate that the negation of these conditions shouldbe satis�ed by the model. Such is the case for certain kinds of software elements: forinstance, we would wish to have the negation of the event `software routine Z engagesin in�nite loop'.A more realistic mapping would take into account information about assumptionswhich can be made about those faults which lie outside the control of the model. Typically,certain other reliabilty measures can prevent some of the events that occur in a fault tree.Another consideration for the requirements is distinguishing between local andglobal faults. If developing a component of a system, one should distinguish between faultsof the overall system, which one is obliged to model if they impinge on the subsystem, andfaults of the subsystem. In particular, a distinction should be made between software andhardware faults: some of the former faults are ones we expect to avoid, not tolerate.We now elaborate the two phases below:1. (a) Which events (faults and others) do we wish the model to take account of?(b) Which gates do we wish the model to take account of?



106� Which events among those we've chosen above do we wish to be involved inthe gate condition?� type of gate condition? (may assume that gates may be classi�ed into twotypes){ causal{ generalisationWhatever selection mechanism is used, we wish to ensure that requirementswith respect to coverage of the tree are complete. We could indiscriminatelygo through each event and gate and derive requirements. However, it is moree�cient to start with the leaf nodes. If we were to ensure the negation of each ofthese events (or just one from each 'AND' component) then that would ensurethat the top-level hazard does not occur (removing a necessary cause removes ane�ect). In the case that we are not able to treat some of the hazards, we moveup the tree and examine gate conditions involving higher level events.If it is not possible to systematically address all events and gates, or if onewishes to di�erentiate between events, then one may apply some selection crieriaas speci�ed in section 4.4.1.The denotation of requirements for the real-life situation may have several alter-natives, all of which appear suitable candidates. Not until some formal analysishas been undertaken, can we discover which is most appropriate. Accordingly(for non-atomic events), we can establish a one-to-many correspondence betweentheir informal denotation and a set of labels, each denoting a formalisation ofthe event. Unless stated otherwise, we take the convention of using upper casewhen we are referring to the real-life event, and using lower case when we arereferring to a particular formalisation. Normally, we choose to consider just oneformal representation at a time.Similarly, it has already been shown that the semantics of a gate may need morethan one formal representation before it is deemed suitable: an example is givenin Section 5 of [GW95], where there is �ne adjustment of the semantics of acausal gate.2. (a) For each event selected, we determine event requirements for the model. Theseare generally logical formulae which explicitly mention some denotation of theevent. Sometimes, however, it may be easier to formulate some indirect require-ment, using some other methodology.



107Thus the details of the requirements will depend on the formalism used; in tem-poral logic for instance, given an event E, formalised as e, if we are using themodal mu-calculus, we may de�ne a function of e to represent the statement \Eis to occur eventually"; or, if we use of a logic with explicit time, such as CSDM,we could specify that \E is to occur within tE seconds".Let Events denote the set of events e in the tree, where Events � � with �denoting the set of formulae of some chosen logic. We specify requirements usinga mapping  : Events ! �. If we use the simple specialisation above, we havefor any e, either  (e) = e or  (e) = :e.(b) For the gates selected as above, apply a procedure similar to that for events,though here we must pay additional attention to the semantics chosen. We de�nean enumerated semantics type whose instantiation determines how we choose tointerpret the relations between events at a gate.� Gate semanticsLet 
 denote the set of logical connective such as 'AND', 'OR', ... etcwhich correspond to the gate types in the informal tree (perhaps as givenin [VGRH81]). Let Events denote the set of a events in a tree. Then theset Gates of gates may be denoted as Gates = 
�Events�. Thus, a gate gmay be given as a tuple (!; out; in1; :::; inn), where ! 2 
, out denotes theoutput event, and the ini, (i = 1; :::; n) denote input events, with all eventsbelonging to Events. Each such event is a proposition belonging to �.Let � denote the set of semantics types for gates (covering generalisationand causal types etc.) Then we may de�ne a function [[ ]] : Gates��! �,which we call the semantic function. In the case that n is made explicit, [[ ]]may be regarded as a function which maps from 
 � Eventsn+1 � � to �.For convenience, we write [[g]]� for [[ ]](g; �). (In practice, the domain forevents may be a strict subset of �.)In determining the semantics of a tree, we restrict the domain to G � �,where G � Gates denotes the set of gates in a tree.We allow for the case when � is understood or otherwise not speci�ed, wherewe write [[g]] to denote the semantics of a gate g.� Requirements relationWe stipulate that requirements for gates should themselves be gate condi-tions. As be�tting standard practice with other requirements, we regard



108these as being originally conceived informally: even though we have at ourdisposal formalised objects, deciding what we require for the software mayneed some informal reasoning. Hence, the de�nition of a requirements func-tion for gates is in two parts: a mapping that establishes one or more re-quirements for each gate, and the application of the semantics function abovethat determines a unique interpretation for each image of this mapping.A requirements relation is any mapping � such that � : G ! Gates. Fora gate g, we say that �(g) denotes the requirements of g. A requirementsfunction is the application of the semantics function [[ ]] to �. Hence, it hassignature G � �! �.We have allowed the requirements derived from gate conditions to be very general.In particular, it allows complete freedom to choose which events are involved in requirementsfor gates { some requirements might not even mention any of the events of g. We haveindicated earlier how formalisation of trees is useful and adviseable to reduce ambiguity.It is arguable then that a formalisation of FTA is rendered much weakened by such great
exibility. However this can be justi�ed when considering that the speci�cation of safetyrequirements is a design decision, and as such is a creative process. Also, this proceduredoes encourage the use of the given formulae as components in generating requirements,so the formalisations can be retained directly. These procedures have been designed to begeneral, whilst allowing for stricter domain-speci�c measures where deemed appropriate, sothey should be in a form that leads to validation with con�dence.As an example to support this contention, suppose that we have the gate conditiong(AND; e; e1; e2) where e denotes 'Error in Patient prescription' with e1 denoting 'datacorruption' in some communications layer. In determining the fault tree semantics, wemay choose a temporal interpretation that states that input events e1 and e2 imply thateventually output event e occurs. However, from the requirements analysis we may wishthat the requirements relation � for this gate speci�es that if both input events occur, thensome method of control ec, say, is invoked immediately, a condition that has no referenceto e and has semantics di�erent from g. Such a very general relation gives much scope tothe requirements speci�er. Hence, there is a special need for care. In many cases, we maywish to preserve semantics as would be the case if we were to use the simple specialisationabove, where we may de�ne that for any g, either �(g) = g or �(g) = :g.



1094.3.6.1 Example of Gate Semantics and Requirements DerivationWe revisit the example of the robot on the assembly line, whose fault tree is givenin Figure ref�g:ftarobot, to illustrate some particular aspects of formalisation within theprocedure FTBuild.For this example, an instantiation of FTBuild may proceed as follows:1. Select E to be 'robot arm swings to angle beyond normal range'.2. We determine the causes of E to be:E1: "Control initiates instruction to swing arm round"E2: "Control cannot make arm stop swinging"3. Simply denote E by e as its meaning can be rewritten in terms of its inputs.Similarly denote E1 and E2 by e1 and e2 respectively.4,5. We now form a gate G1. At this stage the Fault Tree Handbook would insistthat E1 and E2 are necessary, su�cient and immediate causes, but, as already argued insection 4.2, this is restrictive. Our formalisation for gate semantics allows much greater
exibility.For instance, suppose 
 = f0OR0;0AND0g. Then we may choose that the set ofsemantic types � contains as a start �1 and �2 to denote generalisation 'OR' and generali-sation 'AND':[[(0OR0; out; in1; in2; :::; inn)]]�1 def= out () in1 _ in2 _ :::_ innand[[(0AND0; out; in1; in2; :::; inn)]]�2 def= out () in1 _ in2 _ :::_ innHowever, many other kinds of relations can be formulated, especially causal ones.Thus we de�ne a causal 'AND':[[(0AND0; out; in1; in2; :::; inn)]]�3 def= out () [in1]even(in1 ^ in2 ^ :::^ inn)where for some formula �, even(�) is a formula in temporal that represents theproperty "eventually � holds".We apply �3 here and stipulate that G1 should be given by:



110[[(0AND0; e; e1; e2)]]�3 def= e () [e1]even(e2)We take 6b) as the next step and just consider the derivation of a safety require-ment generated from G1. For one requirement we may stipulate a protocol feature thatensures that at least we can ascertain the connection is up. This is achieved by requiring:After the control sends an instruction to the robot, an acknowledgement isreceived from the robot" (which we denote as the event ec).Such a requirement requires the de�nition of several other events: the issuing of anycommand byEi may be denoted control:send:instr, for the sending of the acknowledgement,we refer to Ea and choose a corresponding denotation to be rob:send:ack; for the receipt ofthe acknowlegement, Eb, we use the denotation, control:rec:ack.For the requirement, we can then formulate the requirement as:[[�1(g1)]]�3 def= ec <=> [control:send:instr]even(rob:send:ack^ control:rec:ack)In words, this means that once an instruction of any kind is sent to the robot,eventually the robot sends an acknowledgement and the control receives the acknowledge-ment. Further requirements �1; �2; ::: may be derived in a similar manner.4.3.7 Evaluating safety requirementsOnce the requirements have been generated, they need to be evaluated in models{ step 6c which consists of determining whether or not, or to what extent, the requirementsare satis�ed { as the evaluation of some general formula relating the safety requirements andthe model. We stipulate that the formula is in terms of predicates, which may themselvesbe of any kind.We give below an algorithm that performs this task.4.3.7.1 An algorithm for evaluating a predicate for a particular safety require-mentA tree and its associated safety requirements may represent simultaneously anyfault in great detail from various perspectives of viewpoints, for instance several levels ofabstraction. In contrast, the corresponding representation in a model is more restricted {typically choices have to be made between levels of abstraction for a given fault.



111For a model to be valid, requires therefore some means for events and gates to beevaluated to take this into account. We give here an algorithm FTEVAL which evaluatesa predicate for a safety requirement of an event or gate. The algorithm is applicable to anysystem on which predicates may be evaluated, including labelled transition systems. Recallthat for gate requirements, the events de�ned may or may not co-incide with those in afault tree.Notation Let E be a set of events and let G be a set of gates. Let G 0 denote the set ofgates which constitute the image of G under �. Let C denote the context of evalutation,being the evaluation according to the set fE ;G;G 0g. Let G(e; e1; :::; en) denote a gate withoutput e and inputs e1; :::; en. For distinct propositions Q1; :::; Qn, let �[�1=Q1; :::; �n=Qn]be the formula � with occurrences of Q1; :::; Qn in � replaced simultaneously by �1; :::; �n.Note thatFTEVAL may then be given as:� Let  be a requirement relation on events and let  C denote its evaluation un-der the context C. Then for an event e 2 E ,  C(e) is evaluated as the predicate( (e))[EVENT (e)=e], where EVENT (e) is de�ned as:e IF e is a leaf node or an output to a causal gate.ELSE(Wj2J EVENT (ej) IF e is an output to a gate of type Generalisation-OR, g(OR; e; e1; :::; en) 2 G0ELSEVj2J EVENT (ej), IF e is an output to a gate of type Generalisation-AND, g(AND; e; e1; :::; en) 2 G0),where J is the index set for the set of inputs for output e in the generalisationgate restricted by E , i.e. where J = fijei 2 Eg.� Let � be a requirements relation on gates and let �C denote its evaluation underthe context C. For a gate g 2 G, suppose the requirements relation is: �C(g) =G(e; e1; :::; en) 2 G 0. Then �C(g) is evaluated as



112[[�(g)]][EVENT (e)=e;EVENT (e1)=e1; :::; EVENT (en)=en] (4:1)Provided predicates may be evaluated in a �nite number of steps, then this algo-rithm terminates for �nite trees. Further, if  and � are de�ned for all events and gates,then this algorithm terminates with a value. One may view the algorithm as de�ningrewrite rules; and this could be the impetus for de�ning new semantics for 'generalisation',especially for gates.The rationale behind this de�nition of evaluation is that we wish to allow that anevent evaluates to true either by itself or, in the case of generalisation, through its inputs.Similarly for gates, we wish that a gate condition holds if the relationship holds between anoutput and any input event as evaluated above.We specify that the gate conditions should be in terms of events as they standrather than in terms of conditions on the maps de�ned by  to allow two levels of require-ments. First, we may prescribe that  (e) holds in order to prevent the occurrence of evente. But what if e does happen (i.e.  (e) doesn't hold)? Then we may use the gate conditionsde�ned by � to prevent it causing problems. In this way, even if a model has undesiredfaults, recovery mechanisms may be stipulated.4.4 De�ning relations between models and fault treesIn this section we aim to provide relations which re
ect practical needs regardingincorporating requirements in the model. A model may be checked for conformance to theset of requirements derived using the procedures 2a) and 2b) in section 4.3.6. Conformancemay be de�ned (and evaluated) according to various levels of strength through the def-inition of one or more conformance relations which prescribe essentially the breadth (orcompleteness) of requirements coverage. A second degree of 
exibility is provided by theintroduction of a weaker notion, consistency, which, in addition, takes account of the factthat the model may be relatively embryonic in its re�nement; and similarly consistencyrelations may be de�ned.Bruns and Anderson have laid the semantic groundwork for relating fault treesand models in [BA93]. This has included the provision of three relations between faulttrees and models which are termed 'consistency' relations. Note that in our work we termthem more speci�cally conformance relations (such that conformance implies consistency).However, the paper being just a start, has the following drawbacks.



113First, no requirements stage is made explicit { the relations that are given simplyinsist that models satisfy gate conditions without modi�cation. We have addressed this gapin sections 4.3 and in terms of the algorithm de�ned there, this omission means that  and� are de�ned to be the identity mapping in all cases.Second, as two of the relations are very strong conditions and the other a minimalcondition, they are unlikely to be much use for most models in practice. In general, a givenmodel is unlikely to satisfy all the conditions in a tree, so we need to have the option ofbeing selective about parts of the tree we wish to examine. Yet, we would like as muchas the whole tree to be consistent in some way with the given model. This requires someleeway on the model itself in terms of how it may be transformed to yield the requiredconformance.We attempt to address the second issue by providing �rst of all some criteriathat enable us to select those parts of the tree that contribute to the requirements. Thisbackground helps to motivate the subsequent generalisation of the results that have beenpreviously derived, gradually building up towards the de�nition of several relations thatare more readily applicable, taking account of the criteria. We concentrate initially on gaterequirements only, and then we expand to incorporate event requirements. We start byintroducing a little terminology (from [BA93]) which we �rst use in the de�nition of a tree,on which we may conduct various analyses.4.4.1 Establishing criteria for relations between fault trees and modelsIn this section we provide some criteria for the selection of events and gates tobe used in requirements and for the requirements themselves. Underlying the selection ofrequirements is the need to ensure safety which will have to be determined qualitativelyand quantitatively, covering severity and likelihood of occurrence. Assuming that there hasbeen more than one fault tree constructed, a further important issue is the selection oftop-level faults which one chooses that the model should incorporate.Some criteria and related issues for a given relation are:� criticality of fault: ideally, we would like for each event both its severity and probabilityof occurrence. Although, for a given fault tree, it is the probability of a sequence orcombination of events that may happen which is the prime factor, it should be notedthat some events may cause faults in many other trees. In practice, to provide somecompleteness, the severity of any fault would require reliabilty analysis plus variousinductive analyses such as FMECA to determine a fault's consequences. Estimates



114have to be made where information is incomplete.� levels of abstraction in fault tree: how much of the tree should be abstracted out atwhat stage in the re�nement? Although fault tree analysis is nominally 'top-down',the causal nature of hazard sequences allows that faults have propogated not onlyfrom lower levels, but also from higher levels, especially via interfaces. For example,consider an 'Out of Range' error on a prescription that is indicated on the display ofa bedside medical device that is part of a network of devices controlled remotely by acentral console. FTA may reveal that the error can have a fault cause in the 'low level'physical layer, which itself may relate to some 'high level' environmental factors such aslocation of objects (c.f. robot example in section 4.2). In this instance, the 'high level'fault has merely been propogated in transparent fashion through reliable channels {higher layers in the communications system. This kind of error also prompts FMECAsince corrupted data supplied to the applications software may initiate further faults.� level of abstraction in model: a system fault may be represented at various levels ofabstraction { how do we match this up with the model? If a model is very abstract itwill model few faults and the search down the fault tree may be only shallow and/orinclude few primary events. Alternatively, at a low level of abstraction, the modelmay cover a lot of leaf nodes which are disconnected.4.4.2 A common semantics for fault trees and modelsWe use labelled transition systems as the semantic model underlying both faulttrees and models/speci�cations de�ned in section 2.5.1.In seeking to establish that such systems satisfy certain properties, we introducefor a transition system T valuations, through a map V that maps variables to set of states.A formula � is then interpreted as the set jj�jjTV of states, which is de�ned inductively onthe structure of the formulae through a set of rules. A model M may then be de�ned asthe pair (T ;V); and a state s satis�es a formula relative to a given M, written s j= jj�jjTV ifs 2 jj�jjTV . In the case that we are applying the formulae to a model M in its initial states0, i.e. where s0 j=M �, we call this a rooted transition system.We add one more notation following [BA93]: for a property � to hold for all states,we use the always temporal operator de�ned by:always(�) def= �Z:� ^ [�]Z (4:2)The fault tree's meaning is in terms of its gates which are predicates in some



115temporal logic. As we are to interpret these formulae over transition systems, we requirethat they hold for all states of the transition systems. Hence, the semantics of the tree isde�ned as the conjunction of all gate conditions:[[t]] def= always( ^g2gates(t)[[g]]) (4:3)where t is a tree and gates(t) denotes the set of gates of a tree.We can be explicit about gate semantics by replacing the [[g]] term by [[g]]�, where� 2 � (as de�ned in section 4.3.6).4.4.3 General conformance relationsConformance relations between requirements and models are also evaluated asa conjunction of predicates, but here the predicates are more general, as allowed in thede�nition of �. In particular, in deriving our requirements, we may not wish to insist onthe use of the always operator, so we do not include it outside the conjunction. (Thus partof the requirements stage involves deciding the temporal scope of the requirements.)The �rst relation allows the user to specify which (top-level) faults and any selec-tion of gates of the fault tree. We use the following notation: Let S denote the safety-relatedsystem, ft(F ) denote the set of fault trees of F . Then in choosing various subsets of ft(F ),for coverage it su�ces to select the maximal tree, tmax(F ) (where 8t 2 ft(F ):t v tmax(F ),with v denoting a subtree relation) and choose subsets of that. A function � is de�ned togive any selection of those trees that are subtrees of tmax(F ).De�nition 4.4.1 General Conformance Relation ILet F 0 � F , where F is the set of faults for S. For any fault F 2 F 0, let �(t) =f� j� v tg and let �(t) � �(t). Also, let � be a function mapping fault trees to sets of gates,such that for any fault tree �, �(�) � gates(�). Then we say that a model M conforms toS with respect to the requirements de�ned by � applied to F 0; � and � if:s0 j=M ^F2F 0 ^�2�(tmax(F )) ^g2�(�)[[�(g)]]We write Mconf S(F 0; �; �).The requirements analysis may typically put forward:



116� choose F 0 to be the (top-level) faults considered most important by the safety analysts,perhaps according to criticality of fault.� choose � to pick out those fault trees which are of interest to us. (E.g., referringto Figure 4.1, F could be `robot arm swings to angle beyond normal range' andif we wanted to concentrate on the communications system, �(Tmax(F )) could beaccordingly a selection of subtrees that have root node `communication fault occurs'.� choose � to pick out those events in a given fault tree that we wish the model toaddress. Here we may use the criterion of abstraction. Such events may or may notbe adjacent to each other in the tree (see the note on abstraction and interfaces).� choose � according to how we wish the relationships between events to be re
ected inthe requirements for the model.We now de�ne example relations. The predicates themselves may be checkedindependently of the model to determine the consistency of the tree. When evaluating thepredicates on the model, they re
ect a variety of speci�c requirements. The �rst two showthat this de�nition generalises the �rst two notions of consistency given in [BA93]:1. For all gates g, put �(g) = always(g), F 0 = F , �(tmax(F )) = ft(F ) and �(�) =gates(�).(i.e. when evaluated with respect to a model M , M is consistent with the fault treeif and only if it satis�es all the gate conditions in the tree.)2. For all gates g, put �(g) = always(g), F 0 = F \ faults(M), �(tmax(F )) = ft(F ) and�(�) = gates(�).This is a kind of minimal condition which says: \M is consistent with the fault tree i�it satis�es all the gate conditions that involve faults of the tree that are in the model".Thus, e.g., if a model has one fault in common with a fault tree, but none of the tree'sevents to cause the fault, then this model will satisfy the minimality criterion.4.4.4 Further generalisation of conformanceWe provide a further generalisation of the above to the level of event in orderto allow for truncated gate conditions where either information about some faults is notavailable or we deliberately choose to ignore some faults. We transfer notions in [BA93],



117where an interpretation of a tree is given in the absence of events, to the interpretation ofa gate in the absence of events.For a gate g, let events(g) denote the set of events speci�ed in g. Let Bool be theset ftrue; falseg. Then the interpretation of a gate g 2 Gates, in the absence of a set ofevents " = fa1; a2; :::; ang � events(g) is de�ned to be[[g � "]] def= _(b1;:::;bn)2Booln[[g]][b1=a1; : : : ; bn=an] (4:4)Note that there is redundancy in this de�nition: if g is an 'AND'-gate, we canhave the same meaning as above simply by putting (b1; : : : ; bn) = Truen.Let � be a function that maps from gates to events speci�ed in the gate such that�(g) � events(g). Now we de�ne a second generalised conformance relation which speci�esconformance in terms of a set of gate conditions restricted according to the selection of faulttrees, plus a set of event conditions, restricted according to the selection of gates.De�nition 4.4.2 Conformance IIA model M conforms to S with respect to the requirements de�ned by  and �applied to F 0; �, � and � (write Mconf S(F 0; �; �; �)) if:s0 j=M ^F2F 0 ^�2�(ft(F )) ^g2�(�)0@[[�(g)� �(g)]] ê2g (e)1APutting �(g) = ; and  (x) = true for all events x gives rise to the de�nition 4.1.This de�nition leaves open whether or not we distinguish between the same eventoccurring in di�erent parts of the tree. This is worthwhile if we wish, say, to analyse justa single gate. In [BA93] there is no such distinction made, since the consistency relation isde�ned on events over the whole tree.Suppose t is a tree. Let � 2 events(t) be a set of events in a tree T . Suppose "Fis a set of events to be ignored for tree F . Now the third consistency relation of Bruns andAnderson is subsumed by putting:F 0 = F \ faults(M), �(tmax(F )) = ft(F ), �(�) = gates(�), for all gates g,�(g) = always(g) and E 2 �(g) i� E 2 "F .4.4.5 Consistency relations for models undergoing re�nementIn this section, we consider brie
y how greater 
exibility may be introduced totake account of the fact that the requirements and the model may be at �rst glance far



118apart. In Chapter 3, section 3.6.2.2, the notion of consistency between speci�cations (ormodels) that has been de�ned by Bowman et al was introduced into the CM framework.That notion de�nes speci�cations to be consistent with each other if each can be re�ned insuch a way that they can merge into the same implementation. Here we treat the comple-mentary problem of consistency between models and requirements. Unlike the de�nitionfor consistency between models, the notion introduced below keeps one side �xed.Let us refer again to the incremental model given in �gure 4.2. So far we have ine�ect concentrated on developing relations which match side by side fault trees and models,as indicated explicitly by the 'mapping' arrows. A more 
exible view is to realise that anyobject can implicitly be related to any image. Thus we can de�ne relations for a model thatis relatively behind, or level with or in advance of a set of requirements.In particular, the conformance relations above insist that requirements are satis�edfor every event and gate and thus are aimed at models at the same level as the requirements.This can be restrictive: consider the case where we are just starting to build a model usingstepwise re�nement. It is likely that the initial versions of this model will conform to onlysome of the speci�ed requirements. Now consider the case where a model is relatively moredeveloped than the set of requirements. There we expect that certain simpli�cations of themodel would be necessary before a model could satisfy all these requirements.Another series of relations may then be de�ned, all placed in the context of re-�nement. We consider a trajectory (or re�nement path) to be a sequence of models, whoseinitial member is the most abstract model, with all other models being some re�nement ofthe previous one. In our general de�nition we do not specify what we regard as re�nement{ that can be made explicit when the modelling context is chosen (e.g process algebra).Thus, we may consider relations in which a model belongs to some trajectory inwhich one of the models does conform. We call such relations consistency relations, withconsistency de�ned in an existential manner. Then we de�ne:De�nition 4.4.3 General Consistency RelationA modelM is 'consistent' with the requirements de�ned by  and � applied to F 0; �,� and � (write Mcons S(F 0; �; �; �)) if it belongs to a re�nement trajectory T containingsome model M 0 such that M 0conf S(F 0; �; �; �).We may be more explicit by following the de�nition of consistency in the previouschapter: let SPEC denote the set of all models (or speci�cations) and let ref � SPEC �SPEC denote a re�nement relation. Then the statement \belongs to a re�nement trajectoryT containing some model M 0" may be replaced by \9M 0 2 SPEC such that MrefM 0 or



119M 0refM)". That is to say, given a set of requirements, Req, then there exists a setMReq ofmodels which conform to the requirements such that: if M is a model that is at a relativelyearly stage in development, then we expect to re�ne it towards someM 0 belonging toMReq.On the other hand, ifM is at a relatively late stage in development, then we expect to showthat it has been re�ned from some such M 0. The de�nition can be specialised if, say, M isalways intended to be a re�nement of M 0. Then M is "consistent" with respect to Req ifand only if MrefM 0.The problem of existence, if tractible, is probably solvable in most cases by runningsome algorithm to actually determine in some exploratory and computationally expensivemanner a model that conforms. This approach is thus unlikely to be very practical. Further,such an approach does not respect the essentially creative aspect of the design processinvolved in building a modelA weaker approach to consistency is to see if one may simplify the requirementsusing one set of operations or the model using another set of operations so that thereis conformance at some speci�ed level. The kind of simplifying operations that may bede�ned will depend upon the languages used for formalising the fault tree and the modelrespectively.The task of simplifying the requirements consists of rede�ning conditions in termsof a reduced sets of events and gates, and the way we reduce the selection depends uponthe structure of the tree. Suppose we know which events "M and gates GM the model issupposed to incorporate thus far. Let "S and GS denote those events and gates for whichsafety requirements have been established. Then one can check for consistency by testingconformance on the requirements of "M \"S and GM \GS . This is in the spirit of the secondconsistency relation of [BA93].However, if one is not sure of the events and gates treated by the model (which mayespecially be the case if the safety analysis and modelling are conducted by two separatepeople or teams), then we need some other approach. A very general method is to treatthis not as a 2 valued decision problem which reduces to terms of yes/no for a speci�cconformance, but rather a function which gives a status of the model, telling us to whatextent a model conforms (or is consistent). Ideally, we'd like this deductive process todetermine the largest subset of requirements to which the model conforms. This may beachieved by appropriate selection of simpli�cation operations on the requirements.



1204.5 ConclusionsWe have provided in this chapter a methodology for generating requirements forformal models from making appropriate use of fault tree analysis, one of the traditionalsafety analysis techniques. There are two main pillars to this: a procedure which spansformal fault tree analysis through to requirements derivation and incorporation into a model;and the extension of existing theory to support the validation of requirements. The workhas shown, amongst other things, that safety-related properties really can and do have asystem basis. Also, as an indication of its viability, many of the usual theoretical issues informal methods are raised quite naturally.Even for simple examples, it is evident that determining where a model has faileda requirement is not always straightforward. In order to be able to develop a fault treein a helpful manner, with penetrating hazard analysis, it becomes important to have awell-structured speci�cation in order to isolate causes of problems. The success of theprocedure is also largely dependent upon the proof techniques for veri�cation and validation{ conformance relations fail to hold where proofs cannot be shown using a given set ofcomputational resources.As this chapter is principally concerned with establishing relations between faulttrees and models, issues surrounding the safety requirements analysis irrespective of modelswere not developed further. However this would be useful: in particular, it would beinteresting to map fault trees to a transition system model for validation, analagous to theprocess that has been carried out to Petri Nets. Assuming that this can be done, thenstate reachability analysis may be performed in one or more of a number of tools available.For complex trees, many of the tools support techniques for simplifying the system, whilstpreserving properties, techniques which have been commonly applied to the analysis ofsystem models. One might also wish to perform 'what-if' analysis by altering some of theevent or gate conditions to supply information towards appropriate methods of control.



121Chapter 5A Theory of Robust Conformance Testing5.1 IntroductionA standard technique for contributing towards the assurance of integrity for safetycritical systems is the use of testing. In industrial practice, testing procedures have be-come well developed through experience. They can have distinct roles: verifying that animplementation conforms to a speci�cation or validation with respect to user requirements.For safety, a key issue is robustness, the ability for a system to operate dependablyin all operational circumstances. It may be possible to determine this through exhaustivetesting so that all eventualities are accounted for, but generally this is not the case sincetesting is a time consuming activity. However, selected aspects may be more amenable.Perhaps the most penetrating aspect of testing is its ability to target certain modes ofoperation to uncover faults, which can certainly contribute to the ascertaining of robustnessor otherwise.In this chapter we start with a general introduction to testing, illustrating someof the ideas in an informal manner. We then proceed to treat testing in a formal softwarecontext, whilst retaining an engineering-style perspective. This view acts as a backdrop tothe context of the speci�c Formal Description Technique (FDT), LOTOS, so that testingin the formal context is also related to testing in the physical world. On the other hand,there is also some discussion as to how testing in the formal setting can serve as a basis fora testing strategy for physical realizations.The foundations of the chapter are: a testing framework due to Brinksma, Tret-mans et al., a notion of what a test or experiment actually is, due to Hennessy and De Nicola,notions of conformance and robustness, as characterised by Brinksma, and the careful con-sideration of their relation to testing relations of Hennessy and De Nicola, culminating in



122a proof that the reduction preorder may be characterised in terms of may and must tests(de�ned later).After this backbone has been established, the main investigation is conducted.This concerns the derivation for a restricted class of LOTOS behaviour expressions of aproposed single (canonical) tester for the reduction pre-order (a well-established relation).This is designed in such a way as to allow a method for implementing it as a LOTOS processde�nition. Further, this tester is uni�ed in the sense that it is designed to test simultaneouslyfor robustness and conformance, in contrast to, e.g., [BAL+89], where testing for each isdone separately.This chapter assumes some knowledge of LOTOS, for which a brief introductionwas given in chapter 2 and a proper tutorial given in [BB87].5.2 Background to Testing in the Formal ContextIn this section we consider standard engineering views on testing and describe theformal analogue, contrasting the two as regards environments for testing.Testing consists simply of supplying certain input(s) into a system during its ex-ecution and observing the response of the system - the outcome. This is normally withthe intention of comparing the response with some given expectation in such a way thatsome de�nite statement may be made about the system. Test outcomes are thus assignedvaluations or verdicts to indicate this. Typically, there may be three verdicts { 'success' (or'pass'); 'failure'; and 'inconclusive'. In such a scheme, either of the �rst two occur whenthere is some output from which one can deduce some property of the system, whilst thelast occurs when either there is no output or the given output is insu�cient to determinean aspect of a system's behaviour.The notion of testing as an input{output function is standard for programming andphysical devices which both receive input from and pass output to an external environment(such as a human operator) via some interface. However, formal modelling languages suchas process algebras are not programming languages and do not 'compute' functions in thisway. Nevertheless, even though 'input' does not come directly from an external environment,we can certainly simulate this through the modelling of tests. In this context we refer totesting implementations with respect to certain properties we wish them to satisfy. We referto physical systems that are to satisfy such properties as realizations.Many railway stations have automatic ticket vending machines which accept coinsand notes and issue change. Suppose you test a prototype machine by buying on several



123di�erent occasions a ticket for 70 pence by feeding in a pound coin. The tester may knownothing about the internal behaviour of the machine, so it is quite possible that the changegiven will be, on one occasion, 3 10p's, on another 10p and 20p, and on yet another nothing(because there's no change left)! This is an instance of non-determinism.The execution of the test may yield either deterministic or non-deterministic be-haviour. In the former, when a test is applied the response of the system will always bethe same. For a non-deterministic system, at least one of the actions performed will becompletely up to the system being tested, lying outside the control of the tester. In thiscase, the response may vary: applying a test may yield some satisfactory behaviour on oneoccasion, but deadlock on another.Testing depends upon taking a viewpoint. Here we treat the system under test asa 'black box' whose responses to tests may be observed only externally. Responses may thenbe characterised as having two aspects: sequences that are accepted (information collated'o�-line' as it were) and responsiveness at a particular instance to extending the test ('on-line' information). Hence, the system's behaviour can be described completely in terms ofthe response to tests of two types { acceptance tests and rejection tests. An acceptance testseeks to determine if the system accepts a given set of interactions with the environment.A rejection test seeks to determine if the system rejects a set of events in a given state.Testing may be made comprehensive through the use of a suitably complete set(or suite) of tests. Further, it may be possible to design a single test to have the same powerto discriminate as a test suite { as is the case for canonical testers.Formal methods provide the following bene�ts as regards the use of testing:� The use of formal methods prompts the careful planning of a testing strategy for therealization, well in advance.� Formal testing can reveal important information about subtle aspects of the behaviourof system being tested.� Further (and hence), the analysis of formalised tests contributes information towardsthe kinds of tests that should be carried out.For example, the use of formal methods can be very useful in planning the ver-i�cation of the correct installation and performance of hardware components and theircon�gurations on which the embedded software depends.



1245.2.1 Testing as an alternative validation and veri�cation activitySome observations can be made as regards the use of testing as an alternativeveri�cation and validation activity to other methods. Regarding the formal setting, testinghas a number of advantages over other traditional veri�cation techniques, which checkproperties of implementations:� Testing allows analysis of an implementation without the tester having to know itsstructure; though, in current practice, most automated tools require some representa-tion of the Implementation Under Test (IUT ) in order to subsequently check testing-based relations.� Consider the task of realizing a formal model as a physical implementation. Somenon-testing based relations for the models cannot be applied analogously to physicalentities, so these cannot help in verifying that the behaviour of the physical imple-mentation meets its speci�cation. However, one can use testing strategies that havebeen applied earlier for the models.� Testing o�ers 
exibility in the strength of properties that are to be shown { fromdemonstrating that an implementation can possibly execute a certain sequence ofevents to the proof that useful pre-order relations hold between it and the speci�cation.Testing allows partial veri�cation and validation in the cases of large implementationswhich are subject to state explosion.� The use of observation composition (speci�cally parallel composition in process al-gebras) o�ers the potential to yield a good deal of information through appropriatedesign of the test. For process algebra, the composition is a speci�cation itself whichmay thus be simulated, thereby revealing much more diagnostic information thanmany model checking tools.However, there are some di�cult practical problems associated with testing of thephysical implementation, which the formal developer needs to bear in mind. A couple are:� How does one know that every outcome has resulted? Even though, one has appliedevery possible test in the test suite, it may never be established conclusively that allthe behaviour of the physical realization has been accounted for { e.g., in a vendingmachine, you o�er 20p on one occasion and got a chocolate; but how do you knowthat next time you will get a chocolate also? In practice, some non-deterministic



125behaviour may be masked. A compromise solution to this is to conclude after nduplicate responses from applying the same test sequence, that there is no further(non-deterministic) behaviour possible.� How does one know that deadlock has arisen? (Consider that you put in a coin andit disappears from view and gets stuck). One way around this problem is to assumeafter a certain delay that deadlock has arisen. In this case, divergence caused by anin�nite internal loop is considered tantamount to deadlock.5.3 Some testing notions illustrated formally in LOTOSThe theory of testing for process algebras was originally developed in a very generaltheoretical setting, as covered fully in [Hen88]. Within the LOTOS community attention hasbeen focused on formalising intuitive notions of what constitute 'valid implementations' withrespect to testing and to construct appropriate test suites derived from speci�cations. It isan approach which is generally used to demonstrate selective aspects { partial veri�cationand the satisfaction of particular properties { with generally less expense on resources.Hence relations between successive implementations may be veri�ed, though not as strongas those which may be shown by working directly with the speci�cation.The main thrust of research in testing LOTOS speci�cations has been to implementformally the methodology of conformance testing [ISO89c]. Conformance is one notion ofvalid implementation which, in small cases, may be enhanced to ensure robustness, asdiscussed in this chapter. Here we employ a formal notion of testing, which �ts within ageneral framework of formal testing presented in [ABe+90, BAL+89], and for which a morerecent presentation is to be found in [Tre94].In LOTOS we represent an input (or environment) simply as another process {a test process (or tester) T . A test consists of composing T in parallel with the IUT ).A trace, being a sequence of events as a result of executing a process { being here thecomposition { constitutes interaction in this process algebra context. Outcomes are either�nite computable traces of a certain form, with verdicts 'success' or 'fail', or traces whichprovide no useful information, possibly incomputable, with verdict 'inconclusive'.5.3.1 Test RequirementsFor tests to be e�ective, requires the consideration of two parts: the design of thetester and the amount of synchronisation { on a set A, say { stipulated in the composi-



126tion. The latter is an important factor that contributes to the strength, being the level ofconstraint on the behaviour that results in executing the test. Regarding the design of thetester, the �rst decision is its set of events (sometimes called label set). Testers typicallyre
ect some user requirements and can vary from containing just a few events to all thosein IUT plus some others. If IUT is some implementation with respect to a speci�cation S,then we denote by T (S) (or just T where S is known) the tester has been derived from S.IUT may have extra events which are implementation details that are not in T 's label set.We use some extra events, F say, which we call 
ags, used for determining verdicts.The tests are designed with 
ags being triggered on reaching certain states, typically aftercertain traces are performed, from which we may draw conclusions. IUT is not obliged toco-perform events in T unless they are stipulated in the synchronisation. Thus, in orderto minimise inconclusive verdicts through the synchronisation, the general practice is torequire that all observable actions are in the synchronisation set A. Note that this makesthe assumption that we know a priori what are the actions possible for IUT . In our workwe make the slight re�nement of de�ning A to be the set of all actions in both IUT and T ,but not in F .For LOTOS processes in general, non-determinism arises when there is a choicewith o�ers of identical actions and/or of the internal i action, the latter we call compulsory,and possibly arising through the hiding of some observable action(s). When a test possessessuch behaviour, there may be a wide variety of possible execution paths, so there needs tobe a way of ensuring that each path is accounted for.In summary non-determinism may arise if a node contains the following choices (ais an event, i is the internal action, P and Q are processes):Case (i) (a;P) [] (i; Q)Case (ii) (a;P) [] (a;Q)Case (iii) (i;P) [] (i;Q)Otherwise the behaviour is deterministic (insofar as guards and predicates asso-ciated with actions may be resolved) and we say that any choices are benign or mutuallyoptional. In any choice, all those branches that do not have an internal action pre�x aretermed optional.It is often the case that when the structure of a formal implementation (model) isknown { it may well be given as a process de�nition. This is where testing a model is easierthat testing a physical implementation since the only way to know completely all possiblebehaviour is to open it up { often impractical for a device, but tractable for a model. This



127also emphasises the importance of working out a testing strategy at an early stage: theconformance of the physical implementation can then be carried out based on the formaltesting strategy.We list more systematically these ideas for the design of test processes. In partic-ular, we include diagnostics for cases of failure.Notation Let the set of 
ags F be partitioned into two: Fsucc indications of success andsome others Fdiag which are used for diagnostics when there are failures. Let S be aspeci�cation and Act(S) denote the set of actions belonging to S.Through a test process T , say, we wish typically to test whether certain behaviouris viable. In order to glean as much information as possible, we may construct T to be:1. Applicable | we require that apart from 
ag events, T can only perform actionsbelonging to S, i.e. Act(T ) � Act(S) [ F2. Discriminating (where necessary) | if a tester is to test for multiple behaviour, itneeds to deduce the choices possible in IUT for this determines what transitions areoptional and what are compulsory.3. Terminating { to avoid super
uous non-terminating behaviour, where possible, everytrace in T is either of �nite length or in�nite due to one or more recursive loopsof �nite length (this is acceptable for testing some kinds of liveness when it is notknown beforehand how many iterations of the loop are required for IUT to eventuallyperform certain behaviour). We say that T terminates when its execution sequences(or traces) cannot be extended. We call such traces maximal and say that T hasreached a terminal state.4. Conclusive | we construct T such that the last action of all maximal traces is inF and denotes either a successful or unsuccessful test execution. We call a maximaltrace with last action in Fsucc a successful maximal run and say that T terminatessuccessfully. We allow failures to be included in maximal traces in order to designtesters which provide diagnoses. (If the test composition terminates before a 
ag israised, this denotes failure).We apply these principles later in the design of the uni�ed tester for the reductionpreorder.



1285.3.2 Test analysisTo draw out worthwhile conclusions about the speci�cations being tested, theanalysis of the tests categorises test executions.The semantics of LOTOS dictate that in the test composition there must be com-plete multiway synchronisation on all actions speci�ed within the parallel operator. Thisenables us to infer information about the behaviour of IUT by selecting an appropriate T toact as an 'environment'. With A and T constructed as above, we have that the observabletraces of the resulting test composition are traces of IUT 's external behaviour. If a traceof IUT cannot be extended by a further observable action to match one in T , then thecomposition will subsequently deadlock.This mechanism of synchronisation enables us to design T to show whether or notIUT possesses a particular trace, typically some desirable or undesirable behaviour. If weapply points 3) and 4) above, we simply look for indications when deadlock arises (indicatedby stop) { if T has reached a successul terminal state, then we draw a verdict 'success';otherwise, we draw a verdict of 'fail'.De�nitioni. Given a speci�cation S and a test T , T has a may response when applied to S if itterminates successfully for at least one execution of the test composition.ii. Given a speci�cation S and a test T , T has a must response when applied to S if itterminates successfully for every execution of the test composition.For T and A as above and IUT representing S this implies:� if T has a may response, then there exists a trace � in IUT , which is some maximaltrace t in T with the last action (
ag) removed.� if T has a must response, then every trace � in IUT which is a subtrace of some t inT , may be extended to t, except for the 
ag action.If T does not have a 'must' response, then provided it is computable it will fail forat least one of its executions: either it will deadlock or it will terminate, without raising a
ag in Fsucc, i.e. in an unsuccessful state.De�nition MAY and MUST testsFor a speci�cation S and a test T , a may (must) test is de�ned to be the evaluation of thepredicate T has a may (must) response when applied to S with valuations 'success' if thispredicate is true; 'fail' if this predicate is false; and 'inconclusive' otherwise.



129The 'may' and 'must' tests are generic { they may be applied to any range of test construc-tions, some of which are de�ned below. Note that in the case that T is just a trace, whereIUT is deterministic, there is no di�erence between a 'may' and 'must' test.5.3.3 Some example testersWe give below some examples of testers, following the design criteria above. Theseare only a subset of possible LOTOS behaviour expressions and are expressed in a particu-larly simple form.1. Sequential TestsSequential tests are those tests where T is de�ned to be a single trace. This is alsocalled trace testing.process SequentialTest [ ... < gates > ..., success] : exit :=<action_1>;<action_2>;...<action_n>;success; exitendproc (* SequentialTest *)2. Property TestsProperty testing consists in testing the satisfaction of more general behaviour,where T is a general process, usually more than just a trace. The four criteria above areapplied for these kinds of tests, which vary as much as the variety of LOTOS behaviourexpressions.One kind of property test is a refusal set test, which checks if a set of events E isrejected in the state where it is applied [Bri87]. It is a process which consists of a numberof choices, one of which o�ers initially the 'success' event, whilst the others o�er initially



130those events to be rejected. It may be used in conjunction with a trace test which consistsof a trace which leads up to the state where a refusal set test is to be applied.The use is maximised if E is speci�ed to be the complement of allowable actionsin the set of all observable actions.Applying the de�nitions above, we have, e.g., a may sequential test evaluates to'success' if T terminates successfully, having executed a desired trace of S. Larger testsmay be regarded as consisting of a suite of such tests.A 'may' test (of the refusal set test) is unhelpful as it is always satis�ed, buta 'must' test is useful for it indicates whether or not the set � is rejected whatever theexecutions in IUT .There is an informative paper on trace testing and property testing in [CG93],where safety and liveness properties are speci�ed and tested using LOLA[Lla91] for theservice de�nition of the ISO Association Control Service Element. This is an interestingalternative to the use of temporal logic, which is a common technique for validating suchproperties, generally favoured due to its expressiveness. However, an advantage of testingdrawn out in that paper is the great 
exibility in the choice of testing scenario, particularlythe handling of data values. A similar testing approach is used in [Tho94] to highlight howprocess algebras revealed errors in the design of a safety-critical medical application.5.4 A generic formal framework for TestingIn this section we put testing on a sound theoretical basis and show how it cantackle more comprehensive validation, called in this context conformance.A special framework needs to be set up for the formal theory and methodology oftesting and conformance. The nature of testing is such that we cannot work directly with thespeci�cation but can only deduce properties of the speci�cation (and its formal description)through observing its behaviour in a given environment. Thus a formal framework has tooperate at two levels: when analysing an implementation under test (IUT ) for conformanceto a speci�cation S, we seek, at the principal level, to establish implementation relationsbetween IUT and S. We achieve this through performing at another level analysis basedon the observation of tests to deduce whether or not an implementation relation holds.Underlying our approach is the observation framework due to Brinksma et al.[ABe+90, BAL+89] which formalises testing in a general way so as to be suitable for a widerange of formal languages, including the Formal Description Techniques Estelle, LOTOS



131and SDL [Tur93]. Within the observation framework we �t a testing system for processalgebras { the Experimental System due to Hennessy and De Nicola [Hen88]. In the latter,there are some useful points as regards the kinds of behaviour any testing theory needs toconsider, especially non-determinism { where, over a number of executions, the IUT mayrespond in various ways to the same test.In order to establish formally the link between observations of a speci�cation'sbehaviour and its actual formal expression, the framework involves constructing an obser-vation relation to operationalise the corresponding implementation relation.5.4.1 Notions of conformance and re�nementGiven a speci�cation S, what do we consider is a valid implementation I? Canwe test this and, if so, how? What do we mean by testing? How can we formalise thisand what formalisms would lend themselves realistically to proof of validity? What are themethods of proof? The consideration of such questions has led to a theory of conformance for'valid implementations' and a theory of conformance testing for demonstrating conformance.The work has been extensive: the formalisation of testing has required the considerationof formal relations between designs and a variety of di�erent notions of implementation(e.g.s [LOT92b, BSS86]). This has led to assorted testing relations, notably pre-ordersand equivalences for process algebras in general [NH84, Hen88] and LOTOS in particular[Bri87, BSS86]. Further on, work has been done on the derivation of tests [Bri89, ABe+90]and various methodologies for derivation (e.g.s [Wez89, HvB94]); an application of one suchmethod (CO-OP) to a case study is reported in [WBL91]. An overview that covers most ofthese developments is presented in [Tre94].We follow largely the material in [Hen88] and [ABe+90, BAL+89]; in the formerHennessy provides some useful elements to be considered in any formal analysis. A formalnotion of testing is presented for process algebras, using their framework (recapitulated insections 5.4.2 and 5.4.3) which is based on the principle of observation of the behaviour ofa speci�cation { for this is fundamental to the nature of testing.The set of conforming implementations for a given speci�cation may be in�nite, soto be practical this set may be speci�ed indirectly using a formal relation and a behaviourspeci�cation (model-based speci�cation), or a requirement speci�cation (logical/axiomaticspeci�cation) [Tre94]. The former is a set of behaviour expressions determined by a relationbetween behaviour expressions, whilst the latter is the set of behaviour expressions suchthat a given set of properties, formulated in some language of logic, are satis�ed. The work



132conducted in Chapter 4 dealt with safety requirement speci�cations; the material belowdeals with behaviour speci�cations.The theory that has been developed supports a stepwise re�nement which may beregarded as starting o� with a (potentially in�nite) set of implementations conforming to Sand gradually reducing this set by imposing extra conditions related to behaviour and/orproperties. By de�ning appropriate relations, consistency between successive re�nementsmay be demonstrated by testing.Here, we choose that speci�cation and implementation are relative notions in ahierarchy of system descriptions, where we de�ne that one description is viewed as animplementation of another description, the speci�cation, if the former may be observed toresult from the latter by essentially resolving choices that were left open in the speci�cation.This notion of implementation appears fundamental; it has been formalised in a wide varietyof settings, having been �rst described for processes in [BHR84], and subsequently treatedin the context of LOTOS (as the reduction relation) in [BSS86]. Implementations in thissense may be characterised by two intuitive notions of what is a valid implementation I ofa speci�cation S:CONF1 Everything prescribed by S should be implemented in I ,CONF2 Everything that I does must be allowed by SBoth of these are subject to interpretation. For the �rst condition, which is one ofconformance, we take the contrapositive: \whenever I can refuse something then S mustalso be able to refuse it". The second adds robustness, for which one may provide theinterpretation that I cannot engage in (extra) behaviour which is not speci�ed in S. Thiscan be thought of as analogous to requiring 'clearance' for any action.5.4.2 A formalisation of behavioural conformanceIn this subsection we quote from the work in [ABe+90] to de�ne the requirementsfor a formal behavioural conformance, widely applicable, though with process algebrasespecially in mind.We refer to speci�cations as behaviour expressions. For two expressions, B1 andB2, to have (formally) the same behaviour we write B1 �R B2, where�R is some equivalencerelation. We stipulate that such a relation may be factorised into pre-orders (i.e. relationsthat are re
exive and transitive) �R:



133B1 �R B2 () B1 �R B2 ^B2 �R B1: (5:1)The pre-orders �R may be used to express 'is an implementation of", which thengives equation 5.1 the intuitively pleasing meaning that B1 and B2 are equivalent if andonly if they have the same class of implementations. Henceforth we refer to �R as animplementation relation when the above interpretation applies; in that case we de�neImplR(B) = fCjC �R Bg (5:2)Thus, given a behaviour expression S that speci�es some system, the conformanceproblem is to determine whether the behaviour BI of a given implementation I of S is valid,i.e. whether BI 2 ImplR(S).5.4.3 Observers and TestsTesting, unlike standard veri�cation, does not work directly on behaviour expres-sions themselves, only behaviours. Testing only allows us to deduce information about thebehaviour expression of I itself. In this section, a language of testing is set up (quot-ing from [ABe+90]) concerned with observations of behaviour and which is then tied inwith behaviour expressions themselves. A framework is constructed which enables externalvalidation of implementations satisfying the relation �R. To achieve this requires someoperational procedure to demonstrate satisfaction on the basis of observations of the be-haviour of implementations. Hence the relation �R should be understood not only as arelation between behaviour expressions, but also as a relation between black box processeswhose behaviour (to be revealed) can in principle be described by behaviour expressions.We de�ne an observation framework as a triple (
;�; j`), where 
 is a set ofobservers, � is a set of observations, and j` is an observation composition. The behaviourin this composition, like the observer O and/or observed B, can be non-deterministic. Theset of observations that result from O regarding B is de�ned by j`, which constitutesinterconnection between behaviour expressions. It can be interpreted as a mapping: ifBehProc is the set of behaviour expressions of observed processes, and Beh
 is the set ofbehaviour expressions of the observer processes, then j` is of the typej`: BehProc �Beh
 ! P(�); (5:3)where P denotes the power set.



134Having introduced these de�nitions for testing in the observation framework, theoperationalization of an implementation relation �R is determined by an observation rela-tion <R � P(�)� P(�), which we intend to be the means for actually showing throughobservation of external behaviour that an implementation relation holds. At this point, ifwe start with �R already in mind, then we need to consider:� Is �R testable, i.e. does there exist a <R such that the implementation relation holds?� Is �R computable through <R, i.e. does the observation relation lend itself to estab-lishing relations subject to current computing resources?Alternatively, �R can be de�ned by starting with <R, in which case one needs tolook at the strength of <R. Historically, the testing theory has followed somewhat laterthan other non-testing based theories, where already many �R's had been de�ned. Perhapsthe �rst theory of testing, based on observation, was developed by Hennessy and De Nicola{ their Experimental System. It is this system which we re-examine later in the light of thetesting framework.In any case, we stipulate that <R is an observation relation for �R when:B1 �R B2 () 8O 2 
 : B1 j` O <R B2 j` O: (5:4)HenceB 2 ImplR(S) () B �R S () 8O 2 
 : B j` O <R S j` O: (5:5)The problem of whether or not an implementation is valid according to the relation�R may thus be decided by using valuations of the composition j` for each observer, whichcorrespond to whether or not the observation relation <R holds. For this we introduceverdicts through the de�nition of a family of mappingsfvO;R : P(�)! fpass; failggO2
 (5:6)with vO;R(V ) = ( pass if V <R S j` O,fail otherwise (5:7)This allows us to reformulate 5.5 as:



135B 2 ImplR(S) () 8O 2 
 : vO;R(B j` O) = pass (5:8)That is, under the implementation relation, B is an implementation of S if andonly if all the results of every observation composition have verdict pass.Note that where R is understood, we may the notation vO;R may be simpli�ed tovO (an assumption made in [BAL+89, ABe+90]).Finally for this section, we de�ne what it means for an implementation relation tobe testable:De�nition (testability)Given an observation framework, (
;�; j`), an implementation relation �R istestable if for all behaviour expressions B there exists a set of observers 
, an observationrelation <R and a verdict function v such that for any behaviour expression B0,B0 2 ImplR(B) () 8O 2 
 : vO;R(B0 j` O) = passIt may not be necessary to use the entire universe of observers to determine whetheror not an implementation relation holds. If a subset exists which can do this, we call thisset a test suite, which is formally de�ned as:De�nition (test suite)Given a speci�cation S, a test suite for ImplR(S) is a family of pairs f< T; vT >gT2� with � � 
 and fvTgT2� a family of verdicts such that:B0 2 ImplR(S) () 8O 2 � : vO;R(B0 j` O) = passWhere the vT is understood, we denote a test suite by its index set, �.5.4.4 Incorporating an Experimental System due to Hennessy and deNicolaIn this section we show how the observation framework can incorporate the testingsystem called the Experimental System, due to Hennessy and De Nicola, and which isdescribed in detail in Sections 2.1 and 2.2 of [Hen88]. This system provides the basisfor operationalising the implementation relations in which we are interested and whichare treated afterwards. It characterises testing in terms of 'may' and 'must' tests. Torecap, our work is on the development of observation relations as the basis for notions



136of implementation, i.e. on the RHS of ( 5.4), focusing in particular on the nature of theobservation composition.The link has already been shown brie
y by Brinksma et al in [BAL+89], using aset of observers de�ned to be all processes with states marked as either succ or unsucc.Here we provide fuller coverage, showing where everything �ts in. We also de�ne a fewextra terms to anticipate later developments.In the framework, we regard 
 as a set of processes { testers (or experimenters),and j` as the result of executions of (parallel) compositions using an interconnector, denotedjj. The behaviour arising from jj is built up from transitions which may be represented byrelations ! written as:! � (BehProc �Beh
)� (BehProc �Beh
)Let P 2 BehProc , and let O 2 Beh
 . Then writing the relation! in in�x notationwe have P jj O ! P 0 jj O0for some behaviour expressions P 0 and O0.If both processes participate during the transition, then we term this interaction.A test between processes P and O is simply the composition P jjO. A test run (orexperiment) is a sequence of transitions (possibly interactions) conducted in the compositionof the tester and the process. It is represented by:P0 jj O0 ! P1 jj O1 ! : : :! Pn jj On ! : : :We say that such a sequence is a computation if it is maximal, i.e. it is in�nite or itis �nite with terminal element Pn jj On (n � 0) which has the property, Pn jj On ! P 0 jj O0for no pair P 0; O0.The set � of observations is in terms of the transitions, which are typically labelled.In equations 5.6 to 5.8 there was introduced the notion of an observation beinggiven a verdict 'pass' or 'fail' depending upon whether or not an observation relation wassatis�ed. Here we use an 'experimental system' to make explicit when such a relationholds. We provide a mechanism for awarding verdicts according to whether tests have been'successful' or 'unsuccessful'.



137Let S � 
 be a set, denoting 'successful' states (processes). We stipulate that thecomputation is successful if Ok 2 S for some k � 0, i.e. if the tester passes through somesuccessful state. We do not specify what constitutes an unsuccessful computation, leavingthis open to de�nition in the respective contexts.We are now able to de�ne an Experimental System.De�nition Given an observation framework (
;�; j`), an Experimental System ES is acollection of the form < P ;O;R;S >, wherei) P is an arbitrary set of processesii) O � 
 is an arbitrary set of observers/testersiii) R = f a!� (P �O)� (P �O) j a 2 Lg is a set of binary interacting relations.iv) S � O is the success set.For such an ES, and P in P , and O in O, we let Comp(P;O) be the set ofcomputations whose initial element is P jj O. Let succ denote a successful computationand unsucc an unsuccessful computation. Let Result(P;O) � fsucc; unsuccg be de�nedby: succ 2 Result(P;O) if Comp(P;O) contains a successful computation.unsucc 2 Result(P;O) if Comp(P;O) contains an unsuccessful computation.5.4.4.1 Testing relationsWe are able to formalise notions of `may' satisfy and `must' satisfy a test throughde�ning 2 relations may and must:P may O if succ 2 Result(P;O)P must O if unsucc 62 Result(P;O)Now de�ne corresponding observation relations <may and <must:P j` O <may S j` O if P may O) S may OP j` O <must S j` O if P must O) S must OWe then de�ne respective verdicts as:vO;may(V ) = ( pass if V <may S j` O,fail otherwise (5:9)vO;must(V ) = ( pass if V <must S j` O,fail otherwise (5:10)



138The corresponding implementation relations �may and �must respectively are pre-orders, and in 5.8, we have:I 2 Implmay(S) () 8O 2 
 : vO;may(I j` O) = pass (5:11)I 2 Implmust(S) () 8O 2 
 : vO;must(I j` O) = pass (5:12)We can now de�ne a testing-based pre-order which re
ects the notions of robustconformance described at the end of section 5.4.1.� conformance: whenever, for a given tester, S has no unsuccessful computations, thenneither must I .� robustness: whenever, for a given tester, I has a successful computation, then so mustS. These notions motivate the following de�nition of a robust conformance testingpreorder, denoted �testrc:De�nition I �testrc S () I 2 Implmay(S) ^ S 2 Implmust(I):A second preorder relation (as de�ned in [Hen88]), which we call the testing pre-order is as above, except for reversing the �must relation in the conjunction:De�nition I 2 Impltesting(S) () I 2 Implmay(S) ^ I 2 Implmust(S):We may also de�ne testing equivalence:De�nition Two processes are testing equivalent, written P � Q if P 2 Impltesting(Q) andQ 2 Impltesting(P )Similarly, we may de�ne the equivalence relation corresponding to the 'testrc'preorder, and see that it co-incides with testing equivalence.The testing equivalence relation may be viewed as the formalisation of the systemdesign concept of a black box. Two systems are testing equivalent (equivalent black boxes)if they cannot be distinguished by testing. Thus we may de�ne two speci�cations S1 andS2 to be testing equivalent if every may (must) test of S1 is also a may (must) test of S2.In [Lan90] there is some related work which de�nes a more powerful set of observersthrough the introduction of a slightly extended version of LOTOS (TLOTOS) designed to



139have the special facility of deadlock detection; the paper also covers the relationship betweenthe reduction and failures pre-orders as described here, but for �nite processes only and notwithin the observation framework.5.4.4.2 Instantiating the Experimental System with LTS Operational Seman-ticsWe now specialise ES by specifying that operational semantics be de�ned throughthe use of LTS, using the de�nitions given for LOTOS in �gure A.1 of Appendix A. Notethat � is a 'silent' unobservable action, which we also call an internal action. We stipulatethat the empty string belongs to L�, and denote it by " and that for any s 2 L�, we de�nes0 = �. Given a 2 L, in any state P , whenever P a) P 0, for some P 0, we have an observabletransition. A sequence < a0; a1; :::; an > of observable transitions is called a trace. For aprocess P , the set of traces is denoted Tr(P ).We now instantiate in the Experimental System, and employ labels for the tran-sitions. Hence, these are denoted as parameterised relations with signature:�! � (BehProc �Beh
)� (BehProc �Beh
)As before let P 2 BehProc , and let O 2 Beh
 . Then writing the relation �! inin�x notation we have P jj O �! P 0 jj O0for some behaviour expressions P 0 and O0 which satisfy the relevant transition rules.A test run is now represented by a sequence of the formP0 jj O0 �0! P1 jj O1 �1! : : : �n�1! Pn jj On �n! : : : where �i 2 L:The set � of possible observations is the set of traces, � = f< a0; a1; ::: >: 8i 2f0; 1; :::g:ai 2 Lg.5.5 Establishing Robust Conformance as a testing relationWe now approach testing from the conformance viewpoint; by appropriate choiceof de�nitions, we show that conformance-based notions are closely related to the testingnotions we examined above; this coverage follows that in e.g. [ABe+90], but providesmore detail, concentrating on the one relation. In our treatment, which is geared towards



140re�nement, we seek to show implementation relations and thus view pre-order relations asappropriate. Hence, we concentrate on showing that we may solve through testing (in theory,at least) the problem of determining for a given S whether or not some I satisi�es I �R Sfor some implementation relation �R. The main result of this section is that, subject tominor restrictions, one such relation, called reduction (or failures preorder) co-incides witha testing relation 'testrc' de�ned within the Experimental System.5.5.1 Preliminary De�nitions and ResultsFirst, we need to introduce a couple of de�nitions which describe the immediatecapability to perform actions in a given state.De�nition (Refusal function)The refusal function of a process B, RB : L� ! P(P(L)) is de�ned for each � 2 L�by: RB(�) = fA � L j 9B0 : B �) B0 : 8a 2 A:B0 6 a))gThe set RB(�) is called a refusal set.Note that this di�ers slightly from the de�nition in [ABe+90] in that a secondcolon is used (between last two terms) instead of a conjunction (^). This is to aid logicalclarity. We may also de�ne a function that is the complement of the refusals in P(L)which we call the acceptance function. Note that this is di�erent from the function de�nedin [ABe+90]:De�nition (Acceptance function)The acceptance function of a process B, AB : L� ! P(P(L)) is de�ned for each� 2 L� by: AB(�) = P(L) nRB(�):The set AB(�) is called an acceptance set.The following result is immediate consequence of the properties of sets:Lemma 5.5.1 Suppose B1; B2 2 BehProc and that � 2 L�, then RB2(�) � RB1(�) ()AB2(�) � AB1(�).



141Some simple manipulation gives an alternative expression of the Acceptance func-tion:Lemma 5.5.2 Let B 2 BehProc and � 2 L�. Then AB(�) = fA � L j 8B0 2 BehProc :B �) B0 : 9x 2 A:B0 x)gProof We have RB(�) = fR � L j 9B0 2 BehProc : B �) B0 : 8x 2 R:B0 6 x)g andAB(�) = P(L) n RB(�). Therefore AB(�) = fA � L j :(9B0 : B �) B0 : 8x 2 A:B0 6 x))g.This implies AB(�) = fA � L j 8B0 2 BehProc : B �) B0 : :(8x 2 A:B0 6 x))g if and only ifAB(�) = fA � L j 8B0 2 BehProc : B �) B0 : 9x 2 A:B0 x))g 2The following simple Lemma shows that a given acceptance set can absorb anyother members of the label set.Lemma 5.5.3 Let B 2 BehProc and � 2 L�. If A 2 AB(�) then 8y 2 L:A [ fyg 2 AB(�).Proof From Lemma 5.5.2, clearly if A 2 AB(�) then for any y 2 L we have: 8B0 2BehProc : (B �) B0):9x 2 A [ fyg : B0 x!. So A [ fyg 2 AB(�) 2.We now de�ne a relation reduction for robust conformance, providing anotherformalisation, being a conjunction of each of the two notions CONF1 and CONF2 giveninformally.De�nition (Reduction Relation)I is a reduction of a speci�cation, written �red, ifI �red S () I conf S ^ Tr(I) � Tr(S)where conf is an implementation relation for conformance and is de�ned as:I conf S () 8� 2 Tr(S) : RI(�) � RS(�)Note that another relation given in the literature is extension [BSS86], which isde�ned as for reduction except that the relation on trace inclusion is reversed. Hence, theequivalence relation for extension also co-incides with testing equivalence. The extensionrelation, in the way it allows extra behaviour does not check for robustness, so we do notuse it here.The following Lemma shows that the reduction relation may be characterisedentirely in terms of refusals:



142Lemma 5.5.4 Let I; S 2 BehProc. I �red S () 8� 2 L� : RI(�) � RS(�)Proof First note that from the de�nition, we have: 8� 2 L�; P 2 BehProc if � 2 Tr(P )then ; 2 RP (�) (since for all behaviour expressions B0 : 8a 2 ; : B0 6 a)); if � 62 Tr(P ) thenRP (�) = ;()) (i) Tr(S) � L� so the conf relation holds.(ii) Suppose Tr(I) 6� Tr(S), so 9� 2 Tr(I) with � 62 Tr(S): Note � is not " since" 2 Tr(B) for all behaviour expressions B. Therefore RS(�) = ;, whilst f;g � RI(�),whence RS(�) � RI(�) which is a contradiction.(() We have already that 8� 2 Tr(I) : RI(�) � RS(�). It remains only to show that thecontainment of refusals holds also for traces not in the traces of I .Suppose � 62 Tr(I), then (as before), RI(�) = ;. As RS(�) is some set, thecontainment follows at once. 2From this we deduce immediately that the reduction relation is a preorder. Theconf relation is not, since it may not always satisfy the transitive property. SupposeP1; P2; P3 are a sequence of processes with P3 conf P2 and P2 conf P1, then 8� 2Tr(P1)\ Tr(P2), we do have RP3(�) � RP1(�), but transitivity can fail for � 2 Tr(P1) nTr(P2). As an example, let P1 = i;b;stop [] a;c;stop, P2 = b;stop, P3 = b;stop []a;stop. Then we have P3 conf P2 and P2 conf P1 but :P3 conf P1 (as RP3(< a >) =P(L) but RP1(< a >) � P(L) since, e.g., fcg 62 RP1).5.5.2 Notes and ExamplesGiven this characterisation of the refusal function, we can observe more easily thefollowing properties that describe the reduction preorder.Regarding processes in terms of their depiction as trees, a process I is an imple-mentation in the sense of reduction with respect to S if it is essentially derived from Sby making certain kinds of choices at each node of the tree of S. These choices are madeaccording to certain rules, that (up to some suitable notion of equivalence) either preservebranches or drop them. I may be observed as having basically a substructure of S (possiblywith some extra duplication), built up in corresponding fashion node by node, starting fromthe root. The rules are (informally):� If a node N of S has only deterministic choices, then these must be preserved in I ,albeit the choice possibly pre�xed by an internal action.



143� If N has at least one non-deterministic choice, then the implementer has the optionof incorporating as a choice a path whose initial(s) action corresponds to that inany one or more of those non-deterministic paths plus any number (zero or more)of the remaining other (deterministic) branches. The subsequent behaviour of thesebranches in I depend upon the behaviour of the corresponding path in S.� In either case, no new paths may be introduced that have initial action di�erent fromthose that may be performed (perhaps after internal actions) from N .In summary, at each node the implementer has an option if and only if there issome non-deterministic choice, in which case, at least one of the non-deterministic pathsmust be incorporated in I .We provide a few examples to illustrate the relation:Example 1 S = a;stop [] i;b;stop, I1 = b; stop, I2 =a;stop, I3 = a;stop [] b;stop,I4 = a;stop [] b;stop [] c;stop.Then we have:I1 �red S,I2 6�red S, since fbg 2 RI2("), but fbg 62 RS(")I3 �red SI4 6�red S, since RI4(< c >) = P(L), but RS(< c >) = ;Example 2 S = a;stop [] b;stop, I=b;stop [] i; (a;stop [] b;stop)Then it may be seen that I �R S.This indicates that the reduction relation does not merely resolve choices that areleft open in the speci�cation { an implementation that is a reduction of a speci�cation canexhibit more complex behaviour, though in general, this requires some duplication of initialactions.Example 3 Allowing implementations to arise through resolving choices that arise in du-plication of actions inserted by the speci�er seems sensible as it re
ects the intention ofleaving it to the implementer to decide between such alternatives depending on externalfactors such as performance, cost etc. This is certainly incorporated in the reduction rela-tion; however, the reduction relation also allows as valid implementations, other processes,which remove benign choices on a non-deterministic branch.We provide several examples to illustrate these points (further discussion of thedrawbacks of the reduction relation are given in [Lan90]).



1443.1: S = a;(b;stop [] c;stop) [] a;b;d;stop, I = a;b;stop [] a;b;d;stop im-pliesI �red S, but here we see that I has lopped o� an action at a benign choice, containedin a non-deterministic branch.3.2: S = a;(b;stop [] c;stop) [] a;(b;d;stop [] c;stop),I = a;(b;stop [] c;stop) [] a;b;d;stop implies that we do NOT have I �red S,since the refusals of S after < a > are smaller than that of I .3.3: S= i;(a;stop [] b;stop) [] c;stop, and I = a;stop [] b;stop. Then Iis a reduction of S - note that the initial choice involves non-determinism, and hencethe benign action 'c' can be dropped in the implementation.3.4: S = i;(a;stop[] b;stop)[] i;(c;stop[] d;stop)[] a;stop[] c;stop, I1= a;stop[] b;stop, I2 = a;stop[] c;stop. Then I1 �red S, but I2 6�red S (sincefb; dg 62 RS(")). However, removing the 'b' action in the internalised branch thato�ers 'a' or 'b', reverses these valuations!5.5.3 Some Guidelines for use of conformance in re�nementSome guidelines are required for e�ective use of this interpretation of conformance,to elaborate on the options open to the speci�er/implementer in the process of moving aprocess de�nition along the re�nement trajectory. In particular, the speci�er has to takeaccount of the rules in the previous section regarding the choice structures so that his/herintentions are retained in the production of conforming re�nements.If the speci�er foresees more than one path of continuation from a given state, allof which are compulsory, then this may be implemented as a benign choice:a1;P1 [] a2;P2 [] ::: [] an;PnImplementations I will conform only if I has a corresponding node with a choicewhich includes each of these paths ai;Pi.However, if one requires a choice in which there is a mixture of compulsory andoptional choices, then all the compulsory choices should be grouped together and pre�xedby an internal action, whilst any options should be included as benign choices:i; (a1;P1 [] a2;P2 [] ::: [] ai;Pi) [] b1;Q1 [] b2;Q2 [] ::: [] bk;Qk



145Here, implementations I will conform only if I has a corresponding node with achoice which includes each of these paths ai;Pi, possibly with internal action pre�xes.More generally, suppose that the speci�er wishes that an implementation possessesat least one branch from several, some of which o�er more than one choice. Then this isspeci�ed through the use of an internal action pre�x before each such branch as follows:lXi=1 i; ( mXj=1aij ;Pij) [] nXk=1 bk;QkHere there are l non-deterministic branches, one of which must be preserved in theimplementation.If the speci�er wishes to specify that the implementation has some pre-emptivepower at a certain state (such as a 'time out' facility), then, as noted in the previous section,under conf, if a node o�ers a choice between a mixture of benign and non-deterministicoptions, then valid implementations can drop any or all of the benign choices and, further,need only retain one of the non-deterministic branches. In this case, the speci�er couldde�ne an observable action such as 'timeout' that does not belong to the synchronisationset A, and which can later be hidden. However, once hidden, for the other (benign) branchesto remain, some other notion of conformance would have to be used for subsequent stagesin re�nement.Once it is decided for a node which paths to include, then some simpli�cationcan take place through the removal of internal action pre�xes, still leaving conformingimplementations. Once this has been done for all nodes, the implementer can seek to reifywith details of 'how', and a new notion of re�nement should be introduced, with the internalaction assuming its more usual conotation of hiding some behaviour rather than being amechanism for resolving choices.ExampleAs an illustration, consider the design of a vending machine VM for maps of alocal UK area that will each cost 2 Pounds Sterling. In our design, we wish to allow themachine to accept 50p and 1 Pound coins. Thus the initial state of a speci�cation VM maybe: VM = 50p; VM1 [] 1Pd; VM2, where VM1; VM2 2 BehProcHowever, suppose that the government announces that it is considering issuing a



146new 2 Pound coin. In our speci�cation we wish to allow for the possibility of acceptingthese new coins depending upon what the government decides, but we don't yet know theoutcome, though news of the decision will be available in due course. By the reasoningabove, we can't simply tack on a branch that accepts a 2Pd choice, instead we need torewrite the initial de�nition of VM to:VM = i; (50p; VM1 [] 1Pd; VM2) [] 2Pd; VM3and some comment is included to explain the choices, including the use of theinternal action.When subsequently, the decision not to go ahead with the new coin is announced,then a subsequent re�nement is settled upon (dropping the internal action pre�x in theprocess): VM = 50p; VM1 [] 1Pd; VM2:and we can proceed to re�ne this model with detail.Overall, the approach above seems workable, but care is needed in interpreting therole of the internal action under conf . Whatever relations are used, it is wise to providecomments to clarify the designers' intentions.5.5.4 Proof that reduction is a testing relationWe now show that reduction is testable simply by demonstrating that it coincideswith the 'testrc' preorder. As a consequence, reduction may be shown by using 'may'and 'must' tests. The following contributing result shows that for any parallel operator,compositions between I and O that lead the tester to pass through a certain state may bemirrored in the composition of S with O.Lemma 5.5.5 Let I; S 2 BehProc and suppose RI(�) � RS(�) and that jj denotes anyparallel operator. Let O 2 
. Then I jjO �) I 0jjO0 implies SjjO �) S 0jjO0, for some processesO0 and S0.Proof We do this by induction.Suppose � =< a0; a1; :::; an >2 L�.Base Case



147There are three cases depending upon the ability of I and O to perform the initialaction a0.1. I jjO a0) I jjO1, some state 01, i.e. a0 is only performed by O. Then, we have either:(a) a0 2 RI("), whence a0 2 RS("), since 8� 2 L�:RI(�) � RS(�), and then SjjO a0)SjjO1.or(b) a0 62 RI("), so O a0) O1 independently of I and hence of any process that o�ersthe action in parallel composition. Hence, SjjO a0) SjjO1.2. I jjO a0) I1jjO, i.e. a0 is only performed by I .Then, since Tr(I) � Tr(S), we have < a0 >2 Tr(S) and hence SjjO a0) S1jjO, forsome process S1.3. I jjO a0) I1jjO1, i.e. a0 is performed by both I and O. Again, since Tr(I) � Tr(S), wehave < a0 >2 Tr(S), so SjjO a0) S1jjO1.The base case is done.Inductive CaseA very similar argument is applied. We assume that the result is true for �0 2 L�of length h, where h 2 N. Thus, by this hypothesis, we have that I jjO �0) I 0jjO0, someI 0; O0: and that SjjO �0) I 0jjjO0 with I �1)0 I 0 and O �2)0 O0, sayNow suppose that the composition of I 0 and O0 can perform the action ah. Asabove, there are three cases, and the arguments are analogous.1. I 0jjO0 ah) I 0jjO00, some state 000, i.e. ah is only performed by O0. Then, we have either:(a) ah 2 RI(�0), whence ah 2 RS(�0), since 8� 2 L�:RI(�) � RS(�), and thenS0jjO0 ah) S 0jjO00.or(b) ah 62 RI(�0), so O0 ah) O00 independently of I 0 and hence S0jjO0 ah) S0jjO00.2. I 0jjO0 ah) I 00jjO0, for some process I 00, i.e. ah is only performed by I 0.Then, since Tr(I) � Tr(S), we have �0 _< a0 >2 Tr(S) and hence there existprocesses S0; S 00 such that S0jjO0 ah) S 00jjO0, for some process S00.



1483. I 0jjO0 ah) I 00jjO00, i.e. ah is performed by both I 0 and O0. Again, since Tr(I) � Tr(S),we have �0 _< a0 >2 Tr(S), so there exist processes S0; S 00 such that S0jjO0 ah)S00jjO00.Hence the statement is true for traces of length h + 1. Thus, as the statement istrue for h = 1, it is true by induction for h = 2; 3; ::: and hence for traces of any length, sothe result follows. 2Proposition 5.5.6 For a speci�cation S and implementation under test, I , suppose thatboth I and every tester in 
 are strongly convergent (i.e. contain no in�nite sequence ofinternal actions) and that in the Experimental System we de�ne jj to be the parallel operatorin which synchronisation is on the set L of all observable actions; and a computation isunsuccessful if it is not successful. Then,I �red S () I �testrc SProof From Lemma 5.5.4 it su�ces to show that 8� 2 L�:RI(�) � RS(�) i� I �testrc S.()) We need to show:1. 8O 2 
: I may O) S may O2. 8O 2 
: S must O) I must O1. Suppose for some O 2 
: comp(I; O)) succ 2 Result(I; O). Then we have:I jjO �) I 0jjOkfor some � 2 �, Ok 2 S and I 0 2 BehProc, where I �1) I 0 and O �2) Ok, say. SinceTr(I) � Tr(S), we have �1 2 Tr(S). It follows immediately from Lemma 5.5.5 that SjjOhas a trace in which O passes through Ok. 22. We prove the contrapositive, i.e. that Result(I; O) 6= fsuccg ) Result(S;O) 6= fsuccg.There are two cases corresponding to the length of the sequence being �nite and in�nite.Case (i): Suppose I jjO �0) I0jjO0 a0) I1jjO1 a1) : : : al�1) IljjOl, and IljjOl ! I 0jjO0 for nopair I 0; O0 and 8i 2 f0; 1; :::; lg:Oi 62 S. From Lemma 5.5.5, we have that any path in I jjOcan be matched in SjjO, i.e. there exist processes S0; S1; :::; Sl such that SjjO �0) S0jjO0 a0)S1jjO1 a1) : : : al�1) SljjOl. Let �dk = �0 _< a0; a1; :::; al >. Then since RI(�dk) � RS(�dk),we have that there exists an Sl such that SjjO �dk=) SljjOl with SljjOl 6! S 0jjL0 for any pairS0; L0 2



149Case (ii): Suppose we have an in�nite sequence I jjO �0! I0jjO0 �1! I1jjO1 �2! : : :. If �i isobservable, then (again by Lemma 5.5.5), it can be matched by the behaviour of SjjO, anin�nite sequence with 8j:Oj 62 S. Noting that IijjOi �! Ii+1jjOi may or may not be matchedby S, we invoke the hypothesis in the proposition that an in�nite sequence cannot containan in�nite subsequence of internal actions, i.e. subsequences of internal actions must be�nite. Therefore, we may apply inductively the argument above. So there exist processesS0; S1; ::: such that I jjO a0) I0jjO0 a1) I1jjO1 a2) : : : (with observable actions a0; a1; :::) ismatched by SjjO a0) S0jjO0 a1) S1jjO1 a2) : : :, where 8j:Oj 62 S. 2(() We prove I �testrc S implies I �red S by proving the contrapositive. Suppose thenthat 9� 2 L�:RI(�) 6� RS(�). Then we need to show :P _ :Q where:� P is the statement 8O 2 
: I may O) S may O� Q is the statement 8O 2 
: S must O) I must Oi.e., show P 0 _Q0 where:� P 0 is the statement 9O 2 
: I may O ^ :(S may O)� Q0 is the statement 9O 2 
: S must O ^ :(I must O)Suppose we have � =< a0; a1; : : : ; ak >.Case (i) RS(�) = ;.We have RS(�) = ; () � 62 Tr(S). Since RI(�) 6� RS(�), we have thatRI(�) 6= ;. Therefore � 2 Tr(I). Now de�ne as (the only) successful testers O those whichjust tack on a successful state after performing �. That is, those O such that O def= a0;O0and Oi def= ai+1;Oi+1; 0 � i � k � 1, where 8i 2 f0; 1; : : : ; Ok�1g:Oi 62 S; Ok 2 S, where\;" denotes action pre�x, (see �gure A.2 for a de�nition). Then I jjO �) I 0jjOk for some I 0.Hence I may O.Let �0 be the longest initial subtrace of � such that �0 2 Tr(S). Then as jj requiressynchronisation on all observable actions, SjjO �0) S 0jjO0 such that S 0jjO0 6 a! for no a 2 L.Thus O cannot in its interaction with S reach a successful state after performing �0, so:(S may O) 2.Case (ii) RS(�) 6= ;So � 2 Tr(S)\ Tr(I). In general, the behaviour of a process after � is a tree. Toprove this case, we look at the behaviour that is possible after �. We construct a tester Oas follows:



150Following the notation above, let O def= a0;O0 and let Oi def= ai+1;Oi+1; 0 � i �k � 1, where 8i 2 f0; 1; : : : ; Okg:Oi 62 S.Let a� be any action belonging to some A 6= ; in AS(�) n AI(�) (some suchaction exists since RI(�) 6� RS(�) and we have that � is a trace of both). Now de�neOk def= a�;Ok+1 where Ok+1 2 S. Then we have that since in our proposition hypothesisneither S nor O contain no in�nite sequences of internal actions and the synchronisation injj is on L, then S must O. However, again through the de�nition of jj, we have I jjO �) I 0jjO0such that I 0jjO0 6a�!, so :(I must O). We are done 2.Notes1. To illustrate that the condition of strong convergence is necessary (for the �rst part),consider the following processes (in LOTOS shorthand): S = a;(b;stop [] c;stop),I = a; I', where I' = b;stop [] c; stop [] i;I'. Then it can be seen that I �redS but I 6�testrc S since, for example, if O = a; succ; stop with Ok = succ; stop 2 Sthen S must O does not imply I must O owing to the possible in�nite sequence ofthe internal i after the initial action a.2. It is not the case that 8� 2 L�:RI(�) � RS(�) implies that after any � 2 Tr(I jjO)\Tr(SjjO), there is no transition which S can do in SjjO which I cannot do in I jjO,for consider e.g:S = a;S0 [] a;S1, S0 =b;stop, S1=c;S2,I = a;b;stopO = a;O1, O1=c;OkThen 8� 2 L�:RI(�) � RS(�). But here SjjO <a>) S1jjO1 with S1jjO1 <c>) S2jjOk,whilst I jjO <a>) I1jjO1, with I1jjO1 6<c>)The small examples used in this chapter may be examined by automated tools.In particular, those illustrating the reduction relation may be checked in the ConcurrencyWorkbench [CPS89] which has the facility of testing the 'may' and 'must' preorder testingrelations de�ned by Hennessy and De Nicola. (Hence the importance of establishing thatthese preorders constitute an alternative characterisation of this relation).The next stage is to actually construct (or derive) a suite of tests �, say, whichmay be used to show whether or not the testing preorder holds. A further consideration isthe existence of a single tester, T (S), derived from S, called a canonical tester which has the



151same testing power as �, which could save a lot of time and e�ort. In the next section weshow for a certain context the existence and construction of T (S), which provides completetest coverage, including a procedure which enables us to deduce the behaviour of S and Iwith all possible testers. In general, it may not be possible to do this where the testers arein�nite.5.6 A Canonical Tester for robust conformance in LOTOS5.6.1 IntroductionIn this section, we look at robust conformance testing for �nite Basic LOTOS spec-i�cations. LOTOS allows a semantic interpretation in terms of labelled transition systems,so we may usefully apply the theory of the Observation Framework and the ExperimentalSystem, with all its results. The theory of test derivation as a whole has been the subjectof much research, but most of the attention has been focused on conformance only. Weare motivated by certain requirements that are important for safety-critical applicationssuch as the Flexport protocol for medical devices. In such areas there is the need to insureagainst unexpected behaviour, i.e. robustness. Thus our approach is to show primarilyhow canonical testers can be built to provide (in certain circumstances) completeness invalidation and, where possible, how detailed information may be obtained. Where overallcompleteness cannot be realised, smaller contexts may be chosen: for instance, a processmay be checked for robustness after executing a given trace.The work in this section consists of developing a canonical tester which is able todetermine whether or not an implementation under test I is a reduction of a speci�cationS. The approach constructs (or derives) a test process, guided by criteria similar to thosementioned in section 5.3.1, and which proceeds iteratively to examine the refusals at eachstate reachable by S. In order to use faithfully the 'may' and 'must' testing strategy onwhich is based the de�nition of the relation testrc, successful and unsuccessful computationsare de�ned, and the tester designed accordingly.There are already described in [Bri87, BAL+89], procedures (due to Brinksma)for deriving a canonical tester for the reduction preorder, where it is split into two parts,which test separately for trace inclusion and the conf relation respectively. The tester forthe conf relation is constructed following the observation �rst expressed by Brookes, Hoareand Roscoe in [BHR84] that processes can be characterised in terms of traces and refusalsthat satisfy certain properties. Hence, Brinksma's tester makes use of failure trees in theconstruction.



152However, this is not the most e�cient in the sense that some of its behaviour maybe removed and it would still su�ce as a tester, though not 'canonical' according to thede�nition given by Brinksma, whose particular notion of canonical imposes the conditionthat the traces of the tester for S must equal the traces of S. Such a constraint gives riseto some pleasant properties: any such tester must be unique up to testing equivalence, i.e.,if T1 and T2 are such canonical testers for conf, then T1 � T2, and further, T (T (S)) � S,i.e the tester for the tester for S gives rise to S, modulo testing equivalence.Relaxing the constraint on traces enables greater e�ciency and larger classes ofvalid testers. Indeed, in [Led91], Leduc has derived another canonical tester for the confrelation that may be seen to start o� with the tester tree derived as in [Bri87, BAL+89]and then prunes it so that it becomes minimal in the sense that removing any traces fromit would nullify the completeness property that is necessary for it to be a valid tester.A corresponding uniqueness property is expressed in terms of a new equivalence relationconf -eq. The canonical tester developed here has a similar approach in that refusals arecomputed for the derivation. However, our presentation is more succinct in that we writedown directly an algorithm for the construction of T (S) which does not require any partic-ular characterisation of S.We also term our tester the uni�ed tester since it is simultaneously meant as atester for both the conf and trace preorder relations. It is a simple composition of twotesters into one, thereby still allowing us to know in the case of failure whether there is lackof conformance or trace inclusion. Brinksma's canonical tester can be extended to test for�red in such a manner by simply adding in some extra branches that test for traces thatextend beyond those belonging to S { discussed a little below.Finally, in view of the wide-ranging checks that have to be carried out for robust-ness, here e�ciency is more of an issue than uniqueness. Thus, we follow the approach ofLeduc so that our tester for �red shares the same minimality property on traces.5.6.2 Outline of MethodologyWe sketch here the main steps involved in justifying the existence of a canonicaltester, through the describing its construction. As an aide-m�emoire, refer to Figure A.1 forthe LTS notation for LOTOS and Figure A.2 for some axioms and transition rules whichspecify how a LOTOS behaviour expression may be unfolded action by action. LabelledTransition Systems for LOTOS are discussed in more detail in [BB89]. Note that given



153certain assumptions (namely that guards and predicates may be resolved), we can extendthe theory for Basic LOTOS to Full LOTOS expressions, where the LTS for LOTOS maybe expressed as a 4-tuple as given in the de�nition of section 2.5.1, such that actions �are implicitly gates parameterised with values. We note especially that synchronisationin parallel composition requires agreement on gates plus values. Indeed, by making theseassumptions we are able to apply conformance testing to our Flexport case study.Testing for the reduction preorder may be seen as a special instance of propertytesting as given in [CG93], where IUT is tested with respect to a property according toa scenario which makes available a certain selection of events for each transition throughconstraining the set of events; in our case we stipulate that the speci�cation, implementationand tester all have a �nite label set and that the scenario consists of all of these except forthe 
ags. The construction of the uni�ed tester T (S) for a given speci�cation S, has at itsheart a directed graph structure (more general than a tree).The methodology consists of the following steps. First there are preliminary de�-nitions { of what it means for a canonical test to be 'satis�ed'; and the scope of our tester.In order to make things computationally feasible, we focus on �nite systems: to avoid non-terminating test expansions, we stipulate �nite data sorts and bounded event traces. Thuswe use a subset of Basic LOTOS for the behaviour expressions BehProc , with the set Beh
of testers T to be BehProc together with a set F of 
ags.Next, the construction is given { a single LOTOS behaviour expression T (S), thecanonical tester, is built according to an algorithm. This is de�ned recursively in terms ofS's behaviour after a trace �, starting from its root node and proceeding down its branches:at each node in T (S), the behaviour is given by �(�), where:� we create non-deterministic choices corresponding to each of the reduced acceptancesets. (In fact for each of these we use a kind of minimal subset called a reducedacceptance set, de�ned later.)� we create a deterministic choice for every action that is not possible for S after �.Such branches lead to a failed computation.� to correspond to a state of deadlock in the original speci�cation we create a non-deterministic choice that leads to 
ag 'success'.Finally, we provide a number of results that should lead to a formal proof that thealgorithm really does generate a canonical tester for the reduction preorder.



154The tester may be seen as being constructed in two parts since in S after a giventrace, �, the behaviour may be characterized by the acceptance sets (which leads to testingfor the conf relation), and the set of actions not possible (which leads to testing for thetrace preorder).ConformanceConsider a speci�cation S and its possible behaviours after a trace �. LetN1; :::; Nnbe the set of ��stable nodes reachable after �. In Lemma 5.6.3 it is shown that thebehaviour at these nodes completely determines RS(�), generating a set R of refusals where8Ri 2 R : Ri � L. From the de�nition, we have that the acceptance set consists ofcomponent sets which we denote by fAj : j = 1; :::; mg, some m 2 N. These have theproperty that 8j 2 f1; :::; mg;8S0 : S �! S 0:9a 2 Aj : S0 a! or Aj = ;, i.e. after S performsa trace �, in each acceptance set there is at least one action by which � can be extended.Thus the tester T for conformance may be constructed by generating a tree thatmirrors in each of its nodes the acceptance sets reachable after any trace � in S. Then Imay be tested for whether or not it is able to synchronise after � on at least one of theactions a o�ered by the acceptance set. This test may be forced by o�ering a choice atthe corresponding node NT in T that consists precisely of a choice of m non-deterministicbranches, one for each acceptance set Aj , with each branch pre�xed by an internal eventbefore o�ering every action in Aj .If there is an unsuccessful computation completed after the empty action at NT ,then, as mentioned above, all actions of some acceptance set are refused, i.e. 9j 2 f1; :::; mg,Aj 2 RI(�), whence RI(�) 6� RS(�) and we do not have conformance. Conversely, if9j 2 f1; :::; mg;Aj 2 RI(�) then it follows that that there will be deadlock.The above accounts for compulsory choices { those paths that must be preserved.We need also to consider those actions that are 'optional'/'benign': if one of these is imple-mented in I , then the subsequent behaviour of this branch must conform. This is achievedsimply by o�ering deterministic branches at the respective node NT of T for each actionthat is possible after some trace � in S, but which is not a member of any acceptance set.Finally as regards conformance, if S has a termination after �, then the correspond-ing acceptance set is empty. The tester captures this by creating a branch that executes a
ag action (not in the label set A) to indicate success before termination.Note that if A1 and A2 are sets such that A1 � A2, then 8a 2 A2 : T jjA1 6 a! )8a 2 A1 : T jjA1 6 a!, whence we deduce that in the above test for conformance, it su�cesto select the smallest sets with respect to containment of (acceptance) sets. This is in



155encapsulated in the de�nition of reduced acceptance sets given below.RobustnessFor robustness, we need to ensure that there is trace inclusion. Similar, to theabove, we allow at a given node NT to o�er extra deterministic choices: for each action thatwould lead to a trace not in S, a branch is created consisting simply of that action followedby a 
ag to indicate failure, followed by the stop action. Hence there will be at least one'fail' indication if I has such an extra branch.These tests may be applied for traces of any length by the appropriate use ofrecursion. For instance, the traces that belong to S may be given recursively, starting with", the empty trace and considering in turn traces that are incremented by single actions.As " belongs to all processes, we can then de�ne for any trace � 2 Tr(S), the followingrecursive procedure Proc(�) to test for trace inclusion, starting with ":Proc(�) Suppose � 2 L�. Then, for an action a, either � _< a >2 Tr(S) in whichcase we reiterate and perform Proc(� _< a >) or � _< a >62 Tr(S), whence wededuce that all traces that contain � _< a > as a pre�x are not in Tr(S).This approach for testing trace inclusion has already been expressed in [BAL+89],which is constructed via another line of reasoning that starts by considering all traces inthe test suite and successively reducing to the same set as above. Although not stated, thistester for trace inclusion can be integrated within the canonical tester detailed in [Bri87]in a manner similar to that described here. The construction of the canonical tester forconf can be extended to test for �red by replacing the standard invertable function that isde�ned on failure tree projections T of processes (de�nition 2.5) by an extension of it thatsimply adds a summation o�ering choices of the form aj ; fail; stop for all aj that are notpossible transitions for T .5.6.3 Derivation of Uni�ed testerIn this section we give the formal derivation of the uni�ed tester for the reductionpreorder.5.6.3.1 PreliminariesWe start by de�ning what we mean by 'canonical' below for processes in general.This de�nition is simply characterised as a special case of a test suite and is more generalthan that in, e.g., [Bri87] which also stipulates a condition on traces.



156De�nition (Canonical Tester)Given a speci�cation S and an implementation relation �R, a test suite f< T; vT >gT2� for ImplrR(S) is a canonical tester if � = fTg for some T 2 
 (i.e., it contains justone element). Where this is the case, we write T (S) for the canonical tester.Hence where such a T (S) exists, determining whether an IUT is an implementationof a speci�cation S may be decided simply by establishing whether or not a test is satis�ed:De�nition (canonical test satisfaction)Let S be a speci�cation, from which a canonical tester T (S) has been derivedfor an implementation relation �R. Then we say that an implementation under test IUTsatis�es the test for �R with respect to T (S) i� v(IUT jjT (S)) = pass, in which case wewrite IUT sat T (S).In order to construct a canonical tester for �red to make use of the testing theoryabove, we need to supply some de�nitions to make up the verdict function, making explicitwhat we mean by successful and unsuccessful computations, and the observation relationcorresponding to �red.NotationLet F = Fsucc _[Fdiag � L, where F is a set of 
ags, with Fsucc being indicationsof success and Fdiag being diagnostics labels for failures. We choose to keep these actionsreserved for the testers, so we de�ne A = L n F and stipulate: 8P 2 BehProc : Act(P ) �A[f�g, whilst 8T 2 Beh
 : Act(T ) � L. Finally, let jj denote the LOTOS parallel operatorwhere synchronisation must occur on all actions in A.De�nition The set of computations restricted by a label set A, denoted Comp(I; T )A is theset of computations between I and T whose transitions have been constrained by synchro-nisation on the set of transitions given in A.Where A is understood, we choose to drop the su�x. Full LOTOS allows �nergranularity in restricting the set of values permissible at gates.De�nition (successful and unsuccessful computations)Let x 2 Comp(I; T )A be a computation represented by:I jj T ! I1 jj T1 ! : : :! In jj Tn ! : : :x is a successful computation if 9� 2 Fsucc; k 2 N : IkjjTk �).



157x is an unsuccessful computation if it is not successful.For the sake of simplicity, we de�ne here Fsucc = fsuccessg;Fdiag = ffailg.Recall that we have: I 2 Implred(S) if and only if v(I jjT (S)) = pass if and only ifI jjT (S)< red SjjT (S). We now de�ne:I jjT (S)<redSjjT (S) () (I may T (S)) S may T (S)) ^ (S must T (S)) I must T (S)):where, for any processes P 2 BehProc ,P may T if Comp(P; T )A contains a successful computation;P must T if Comp(P; T )A does not contain an unsuccessful computation.By construction, we will claim that S must T (S) is always true and that the mayobservation relation always holds. Hence:De�nition (canonical test satisfaction for �red)I sat T (S) for �red if and only if I must T (S).In words, this means that I is a reduction of S if and only if composing canonicaltester T (S) of S with I yields no unsuccessful computations.De�nition (Reduced acceptance sets)Let B 2 BehProc and � 2 L�. Then a reduced acceptance set for B, denoted �AB(�)is one that satis�es:1. �AB(�) � AB(�)2. 8A 2 AB(�) : 9A0 2 �AB(�) : A0 � A.3. 8A1; A2 2 �AB(�) : A1 6� A2.This de�nition is similar in style to that in [ABe+90], except for the addition ofthe last condition which ensures the following property:Lemma 5.6.1 The reduced acceptance set is unique.Proof Suppose �A1 and �A2 are both distinct reduced acceptance sets for process B and trace�. Therefore WLOG 9A 2 �A1 such that A 62 �A2. From condition 1), A 2 �A1 ) A 2 AB(�).From condition 2) it follows that 9A0 2 �A2 : A0 � A. Since from the hypothesis, A0 6= A,this implies A0 � A. Now from conditions 1) and 2) we require 9A00 2 �A1 : A00 � A0. From



158the transitive property of set inclusion this implies A00 � A which contradicts condition 3)2Lemma 5.6.2 Let P;Q 2 BehProc. Let � 2 L�. Then AP (�) � AQ(�) () �AP (�) ��AQ(�)Proof()) Let A 2 �AP (�). Then by condition 1) A 2 AP (�) and hence by the hypothesisA 2 AQ(�). Suppose A 62 �AQ(�). Since A 2 AQ(�) we have from condition 2) that9A0 2 �AQ(�) such that A0 � A (and also with A0 2 AQ(�) { from condition 1). Thereforefrom our supposition it follows that A0 � A. By condition 3), A0 62 �AP (�). Two cases arise:1. A0 2 AP (�). This implies in condition 2) that 9A00 2 �AP (�) such that A00 � A0 � Awhich contradicts condition 3).2. A0 62 AP (�). This implies AP (�) 6� AQ(�) which contradicts the hypothesis of theLemma.In either case we reach a contradiction, and so the left implication holds 2(() Let A 2 AP (�). There are two cases:1. A 2 �AP (�). Therefore by the Lemma hypothesis, we have A 2 �AQ(�) and then byset inclusion in the de�nition of reduced acceptance sets A 2 AQ(�).2. A 62 �AP (�). Therefore 9A0 2 �AP (�) : A0 � A. By the Lemma hypothesis, A0 2 �AQ(�),hence (by set inclusion) A0 2 AQ(�). Finally we apply Lemma 5.5.3 inductively oneach element that is in A nA0 to give the required result 2The following Lemma allows a simpli�cation in the structure of the summationsthat make up the de�nition of the algorithm, stating that at any given node it is thetau-stable nodes that govern the refusal sets.Lemma 5.6.3 Let S be a state belonging to a process P which has no in�nite internal loops.Let N1; N2; :::; Nn be the set of � -stable nodes reachable from S after �. Then RS(�) =Sni=1RNi(").Proof A state is either � -stable or not, so we need only show that after �, any refusals instates that o�er � are also refusals of some � -stable node that is reached after �.



159If 9Nx such that S �) Nx where Nx �! then there exists a � -stable Ny suchthat Nx �k! Ny for some k 2 N since we have the assumption that there are no in�niteinternal loops. Then we have: 8a 2 RNx("):a 2 RNy(") since otherwise Nx a) which is acontradiction. This is true for all such Nx and the result follows2.5.6.3.2 Construction, Properties and ExamplesThe algorithmT (S) is derived from S by de�ning T (S) to be �(") where 8� 2 L�:�(�) :=Xb62out�(S) b; fail; stop [] Xc2out�(S):69A2�AS(�):c2A c; �(� _< c >) []XA2�AS (�):A6=; i;Xa2L:a2Aa; �(� _< a >) [] [IF �AS(�) = ; THEN success; stop](5:13)where for a behaviour expression B and trace �, out�(B) := SB �)B0 out(B0) where� 2 Tr(B).In summary, the �rst summation term handles traces that lie outside those ofS, the second summation handles 'benign' branches whose initial action does not matchany initial action in a 'compulsory' branch, the third speci�es branches corresponding tonon-deterministic choices in S, whilst the last one speci�es a successful termination corre-sponding to the case that S enters a terminal state.The �rst Lemma for the algorithm simply states that whenever we have a trace ofS, then the � function of this trace o�ers all actions:Lemma 5.6.4 Let S 2 BehProc. Then 8� 2 Tr(S):out(�(�)) = L.Proof We have that for any x 2 L, either x 2 out�(S) or x 62 out�(S). The �rst summandof the algorithm o�ers all actions of the latter case. Noting that x 2 A : A 2 �AS(�) )x 2 out�(S) by de�nition of the acceptance set, it also follows that the second and thirdsummations together o�er all actions for the former case2The second Lemma shows that any trace of S is also a trace of the tester.Lemma 5.6.5 Let � 2 Tr(S). Then T (S) �) �(�).



160Proof by induction on len(�)base case: len(�) = 0� = ". Therefore T (S) = �("). Clearly �(") ") �(") 2Inductive caseSuppose that the result is true for � 2 L� : len(�) � k, k 2 N. Let �0 2 L� :len(�0) = k + 1. Therefore �0 = �k _< x > for some �k 2 L� : len(�k) = k and wherex 2 L. By the induction hypothesis, T (S) �k) �(�k). Since �k _< x >2 Tr(S), thenx 2 out�k (S). Therefore RS(�k) 6= P(L) so �AS(�) 6= ;. And hence �(�k) can only performthe x action via one of the second or third summand since these partition out�(S). In eithercase we have �(�k) <x>) �(�k _< x >) and the result follows2.Thus the result is true for traces of length 0,1,2, ... by induction and we are done.2An immediate corollary from the above two Lemmas is that if � 2 Tr(S) then out�(T (S)) =L. The next Lemma shows that whenever the test composition performs a trace ofcertain length, then it will reach a state in which the Gamma function of the trace is withinan internal transition of this state.Lemma 5.6.6 Let S; I 2 BehProc. Suppose � 2 Tr(I jjT (S)) and out�(T (S)) 62 Fdiag.Then 8I 0 2 BehProc ; 8T 0 2 Beh
:(I jjT (S) �) I 0jjT 0 implies �(�) ") T 0).Proof The proof is by induction on len(�).Base case: len(�) = 0We have � = ". So I jjT (S) ") I 0jjT 0 which implies T (S) �k! T 0 for some k 2 N andhence �(") ") T 0 2Inductive caseSuppose that the result is true for � 2 L� : len(�) � k, k 2 N. Let �0 2 L� :len(�0) = k + 1. Therefore �0 = �k _< x > for some �k 2 L� : len(�k) = k and wherex 2 L. Suppose I jjT (S) �0) I 0jjT 0. Then looking at intermediate states, we have I jjT (S) �k)IkjjTk for some Ik; Tk such that IkjjTk <x>) I 0jjT 0. Thus Tk <x>) T 0, through the de�nitionof jj, and by the induction hypothesis we have: �(�k) ") Tk. Hence �(�k) <x>) T 0. Nowinstantiating in the de�nition of the algorithm gives,



161�(�k) :=Xb62out�k (S) b; fail; stop [] Xc2out�k (S):69A2�AS(�k):c2A c; �(� _< c >) []XA2�AS (�k):A6=; i;Xa2L:a2Aa; �(�k _< a >) [] [IF �AS(�k) = ; THEN success; stop]Suppose the tester performs an action from the �rst summand. Then after � thetester can perform a 'fail' action which contradicts the Lemma hypothessis.We are left with either:� �(�k) <x>) �(�k _< x >)or� �(�k) <x>) �0 such that �(�k _< x >) �! �0.Hence we deduce that �(�k _< x >) ") T 0 as required 2Thus the result is true for traces of length 0,1,2, ... by induction and we are done2 These Lemmas should be su�cient to show the main conjecture, i.e. that if Sis a speci�cation with �nite behaviour and T (S) constructed as above, then T (S) is acanonical tester for the reduction preorder. Further, the construction should enable thesimple deduction of the following:1. (Decomposition property)� I satis�es trace inclusion i� T (S) does not record a 'fail' in the test composition;� I satis�es the conf relation i� all terminations in the test composition recordeither 'fail' or 'success'.2. (Minimality property with respect to traces)Let S 2 BehProc , with canonical tester T (S) (for reduction preorder). Let T 0 be an-other canonical tester. Then Tr�(T 0) � Tr�(T (S)), where 8B 2 BehProc , Tr�(B) :=f� 2 Tr(B) : � 2 fL n Fg�g.



162ExamplesExample 1 S = i;a;stop [] b;stop. L = fa; b; cg.Then RS(") = ffb; cg; fbg; fcg; ;gTherefore, AS(") = ffa; b; cg; fa; bg; fa; cg; faggHence �AS(") = ffagg.RS(< a >) = RS(< b >) = P(L). Hence �AS(< a >) = �AS(< b >) = ;... hence ...T(S) = i;a;TL [] b;TL [] c;fail;stopwhereTL = succ;stop [] a;fail;stop [] b;fail;stop [] c;fail;stopExample 2 S = i;a;stop [] i;(c;stop [] d;stop) [] a;stop [] c;stop.L = fa; b; c; dg.Then RS(") = ffb; c; dg; fb; cg; fb; dg; fc; dg; fbg; fcg; fdg; ;; fa; bg; faggTherefore, AS(") = ffa; b; c; dg; fa; b; cg; fa; b; dg; fa; c; dg; fa; cg; fa; dggHence �AS(") = ffa; cg; fa; dgg.RS(< a >) = RS(< c >) = RS(< d >) = P(L). Hence �AS(< a >) = �AS(< c >) = �AS(< d >) = ;... hence ...T(S) = i;(a; Tm [] c;Tm) [] i;(a;Tm [] d;Tm) [] b;fail;stopwhereTm = succ;stop [] a;fail;stop [] b;fail;stop [] c;fail;stop [] d;fail;stopExample 3 S = i;(a;stop[] b;stop)[] i;(c;stop[] d;stop)[] a;stop[] c;stop. L =fa; b; c; dg.Then RS(") = ffc; dg; fcg; fdg; ;; fa; bg; fag; fbgg) AS(") = ffa; b; c; dg; fa; b; cg; fa; b; dg; fa; c; dg; fb; c; dg; fa; cg; fa; dg; fb; cg; fb; dggHence �AS(") = ffa; cg; fa; dg; fb; cg; fb; dgg.8x 2 L:RS(< x >) = P(L). Hence 8x 2 L:�AS(< x >) = ;... hence ...T(S) = i;(a; Tm [] c;Tm) [] i;(a;Tm [] d;Tm) [] i;(b;Tm [] c;Tm) [] i;(b;Tm[] d;Tm)where, as above,Tm = succ;stop [] a;fail;stop [] b;fail;stop [] c;fail;stop [] d;fail;stopExample 4 To illustrate computations of T (S) and I terminating with/without raising 
ags,consider: S = a;b; stop, I1 = a; stop, I2 = a; c; stop with A = fa; b; cg. Then



163T(S) = i; a;(i;b;TL [] a;fail;stop [] c;fail;stop) [] b;fail;stop []c;fail;stopwhere TL = succ;stop [] a;fail;stop [] b;fail;stop [] c;fail;stopIn this case, T (S)jjI1 = a; stop and T (S)jjI2 = a; fail; stop { the former fails toconform, whilst the latter fails trace inclusion.5.6.4 A Special CaseWhere the refusals of S can be expressed simply, then this may lead to simpli�ca-tion in the tester expression, as is the case resulting from the following Lemma.Lemma 5.6.7 Let S 2 BehProc and let � 2 L�, where I is some non-empty index set.Suppose RS(�) = Si2I P(L n ai). Then, we have:1. �AS(�) = fSi2Ifaigg.2. foutS(�)g = �AS(�)Proof Let X = Si2Ifaig.1. We show �rst that X 2 AS(�):Suppose X 2 RS(�). Then since RS(�) = Si2I P(Lnai), we have that 9ai 2 X : X 2P(L n ai). This gives an immediate contradiction (since ai 2 X but ai 62 P(L n ai)).Therefore X 62 RS(�). However X 2 P(L), so X 2 AS(�).We now show that 8A 2 AS(�) : A � X . Suppose this is not the case, so 9A 2AS(�); x 2 X : x 62 A. But then we have A 2 P(L n x). Hence A 2 RS(�) |contradiction.Now let Z = fXg. Then it can be seen that this is in fact �AS(�) since it satis�es allthree of the requirements in the de�nition of reduced acceptance sets.22. From the �rst part we need only show that outS(�) = Si2Ifaig.Suppose that a 2 outS(�) ^ a 62 X . Then we have 8ai : i 2 I : fag 2 P(L n ai).Then since RS(�) = Si2I P(L n ai)any set in P(L) containing 0a0 must be a refusalset in which case a 62 out�(S), which is a contradiction. Therefore out�(S) � X .Hence it follows that 8x 2 X : x 2 out�(S) since otherwise Lfxg 2 RS(�) which is acontradiction 2



164These Lemmas lead to considerable simpli�cation in the expression for the canon-ical tester (equation 5.13) for this particular case:�(�) = Xb2(Lnout�(S))b; fail; stop [] Xc2(out�(S)nX) c; �(� _< c >) [] i;Xa2X a; �(� _< a >)(5:14)where X = Si2IfaigWe now need to know structures which make use of the simpli�cation. One suchis as follows.Suppose that 8N : S �) N : N = Pi2J �k; ai;N 0 for some k 2 N; N 0 2 BehProc,where ; 6= J � I. Then we do indeed have RS(�) = Si2I P(Lnai). In the following sectionwe use this particular case to help in the actual construction of simpler testers re
ectingthe simple tester expression 5.14.5.7 Implementation in a subset of Full LOTOSWe provide an implementation of the algorithm in a restricted subset of Full LO-TOS, in which actions are parameterised with �nite data sets and where predicates areresolved. This allows for a simple injection between behaviour expressions given as LTSsand the corresponding LOTOS speci�cation, preserving the tree structure and the relation-ships between nodes. The algorithm for this subset of Full LOTOS may then be expressedas follows.The algorithm in Full LOTOS subsetT (S) is derived from S by de�ning T (S) to be �(") where 8� 2 L�:�(�) := n1Xi=1 m1Xk=1gi!vi;k 62out�(S) gi!vi;k; fail; stop []n2Xi=1 m2Xk=1:gi!vi;k2out�(S)::�(gi!vi;k) gi!vi;k; �(� _< gi!vi;k >) []XA2�AS(�):A6=; i; n3Xi=1 m3Xk=1gi!vi;k2out�(S):fgi!vi;kg2A gi!vi;k; �(� _< gi!vi;k >) []



165[IF �AS(�) = ; THEN success; stop] � �(�)where for x 2 L�, �(x) is the statement 9A 2 �AS(�) : fxg 2 A.The algorithm is implemented directly following the shape of the algorithm, usingiteratively process instantiation. An enhancement is made to the test for trace inclusion,whereby diagnosis on failure is given according to whether or not there is synchronisationon gates or values; the 'fail' action is e�ectively parameterised to re
ect this.5.7.1 Main procedure1. First the algorithm must be expressed to account for parameterised actions in theform corresponding to (�), so all predicates and guards must be resolved and thespeci�cation 
attened. One may use a tool such as SMILE [EW93] to do this.2. The data types of S are combined into one super data type, whose sort we give belowas Data. This data type requires the sorts for the Natural Numbers, the Booleansand Set. We have used the pre-de�ned types given in an updated version of the ISOlibrary. Equations are then de�ned fully for the operations lt, eq, and ne.3. The tester itself may then be constructed as a LOTOS speci�cation whose body isgiven by a single process Tester which consists of a structure corresponding to thatin (*).Now we de�ne the tester as:specification CanonicalTesterReduction [< all gates >, fail data, fail gate,fail both, success] : noexitbehaviour Tester[< all gates >,fail data,fail gate,fail both,success](<>)whereprocess Tester [ < all gates >, fail data, fail gate, fail both, success](�:string): noexit: =n1Xi=1 m1Xk=1gi!vi;k 62out�(S)([9x : gi!x 2 out�(S)]! fail data; stop [][9h : h!vi;k 2 out�(S)]! fail gate; stop []



166[6 9h : h!vi;k 2 out�(S)AND 6 9x : gi!x 2 out�(S)]! fail both; stop) []n2Xi=1 m2Xk=1:gi!vi;k2out�(S)::�(gi!vi;k) gi!vi;k; Tester[< all gates >; fail data; fail gate; fail both; success](�+ < gi!vi;k >) []XA2�AS(�):A6=; i; n3Xi=1 m3Xk=1gi!vi;k2out�(S):fgi!vi;kg2Agi!vi;k; Tester[< all gates >; fail data; fail gate; fail both; success](�+ < gi!vi;k >) [][�AS(�) = ;]! success; stop]endproc (* Tester *)endspec (* CanonicalTesterReduction *)Notes1. Within the body of the process Tester, there are recursive calls to Tester. It maybe possible to encode the behaviour of S within the data types and take this asa process instantiation. Otherwise, when the behaviour of S is entered manually,this 'call' should be substitued by the body of the Tester process. Likewise for thepreconditions.2. For the diagnosis, there will be some super
uous 
ags: if there is a 'fail-both' indica-tion, then there will also be a 'fail-data' or 'fail-gate' indication.5.7.2 Special CaseWe can make use of the special case expressed in section 5.6.4. This furthersimpli�cation allows a straightforward application to the Flexport case study: in the nextchapter it is described how the tester is actually derived from a speci�cation based on aMessage Sequence Chart.



167We assume that the LTS for a speci�cation S has a tree structure as given by:S = nXi=1 miXk=1 �pi ; gi!v(i;k);S(i;k) [] Xj2J �nj ; stop; (5:15)In this case, we implement the algorithm by an injection between behaviour ex-pressions and the corresponding LOTOS speci�cation, preserving the tree structure and therelationships between nodes. To implement the algorithm neatly, we use iteratively processinstantiation of a process TestEvent within a newly de�ned process tester, which itself isnot recursive. The TestEvent process gives diagnosis on failure of trace inclusion.For the case that for all nodes N either mi = 1 and pi = 0 or pi > 0, we mayexpress the tester process asprocess Tester [ < gates >, < failure gates >, success] : noexit : =< q(N) > (TestEvent[g1,< failure gates >,fail data,fail gate,fail both,success](v(1;1), Insert(v(1;1), Insert v(1;2), ... Insert 1(v(1;m1),fg ) ... ))>> < q(N11 > TestEvent[ ... ] ( ... )>> . . . >> success; stop)[]TestEvent[g2,< failure gates >,fail data,fail gate,fail both,success](v(2;1), Insert(v(2;1), Insert v(2;2), ... Insert 1(v(2;m2),fg ) ... ))>> . . . >> success; stop[]...[]TestEvent[gn,< failure gates >,fail data,fail gate,fail both, success](v(n;1), Insert(v(n;1), Insert v(n;2), ... Insert 1(v(n;mn) ,fg) ... ))>> . . . >> success; stop)endproc (* Tester *)where for a node Nx, q(Nx) is a kind of rewrite operation: replace this by an empty



168string if #out(Nx) = 1 or else by internal action pre�x 0i;0 if #out(Nx) > 1. If out(Nx) = ;then write 'success;stop'.Note: Insert, an operation of the set data type, adds an element to a set.5.7.2.1 LOTOS 'procedure' TestEventWe de�ne the process TestEvent which 'receives' as gate labels a correct gate gplus other (incorrect) gates f1; f2; ::: and as a value parameter the correct data z. Thisprocess o�ers for any value zz:Data, all actions possible of form gg!zz, where gg is any of thesupplied gates. If the correct action (gate and data) is speci�ed then the process successfullyterminates via exit. Otherwise, depending on IUT , there will either be immediate deadlockarising when IUT lacks a branch, or undesirable synchronisation on some other action ofIUT , not equal to g!z. After such an action one of three 
ags are raised, immediately before(unsuccessful) termination:1. fail data | gate was matched, but the data was not matched;2. fail gate | data was matched, but the gate was not matched;3. fail both | neither the data nor the gate were matched.By choosing to supply to TestEvent all gates and by encapsulating all possibledata values in the sort data, this process o�ers all actions possible. When the test processis speci�ed in this way, it becomes a test of robustness.Special care is required to ensure that the equations for sort data are completelyde�ned otherwise there may be deadlock without diagnosis.process TestEvent [g,f1,...,fail_data,fail_gate,fail_both](e:Data,z:Pset) : exit :=choice zz: Data [][zz eq e] -> (* Correct Data *)(g!e; exit (* valid input *)[]f1!zz; fail_gate; stop.. (* Incorrect gates *)



169.)[][zz NotIn z] -> (* Incorrect Data *)(g!zz; fail_data; stop (* but Correct Gate *).f1!zz; fail_both; stop.. (* Incorrect data and gates *).)endproc (* TestSet *)Note: It is possible and convenient to de�ne another process simpler than TestEvent, whichcaters for the special case when there is no choice in S.5.7.3 ObservationsThe complexity of the algorithm in terms of a simple LTS setting and BASICLOTOS is not severe for �nite transition systems. In general, the main structure of T (S)is actually more simple than that of S: the iterative design of the algorithm generates atree-like structure for T (S) consisting essentially just of traces from S; further, T (S) allowsonly one path for a given trace. The extra bits of T (S) are the short failure branches thatshow lack of robustness (or trace inclusion).The main computational concerns are the determination of the acceptance setsafter a given trace. This depends upon the size of the label set and the intricacy of S interms of the number of di�erent ways of performing a certain trace. For our subset of FullLOTOS, additional concerns are in being able to reduce the speci�cations to the requiredform, resolving any predicates. In general, this may only be practicable if a tool such asSMILE's conversion to EFSM can perform the reduction automatically.In the special case that S is a tree, then the computations for the acceptance setare very simple in nature and manual translation for at least small size speci�cations isrealistic. This has enabled the implementation of the algorithm described in sections 5.7.1



170and 5.7.2, for which general expressions have been given." the special case which we havetested on one or two simple examples, which are illustrated for Flexport in the next chapter.At present, the tester is generated manually and it is evident that it soon becomes quiteunwieldy. However, it should not be too di�cult to generate the canonical tester speci�ca-tion automatically from the acceptance sets of S. As already noted, a further re�nementwould be to code the behaviour of S as a data type, in which case the tester would have avery neat expression.The simpli�ed case shows how the implementation of the unifed tester can beenhanced in structure by de�ning a special process that handles trace inclusion, e�ectivelyallowing this test to be abstracted out from the main tester process.5.8 Discussion: Alternative notions of conformanceIt is worth considering still other relations which provide di�erent formal interpre-tations of the notion of implementation, conformance and reduction. Some experimentalwork has been conducted for a novel relation, cut, denoted �cut, that we argue may serveas a useful alternative to �red as an implementation relation that can be used for reducingspeci�cations, and which can be tested. In this setting, robust and conforming imple-mentations are considered to be those processes constructed simply through reducing thespeci�cation by allowing non-deterministic branches to be optionally incorporated in theimplementation, whilst preserving 'benign' choices. This is in accord with the notion thatreduction decreases the amount of non-determinism. Hence, this relation keeps the samenotion of robustness, but di�ers in the notion of conformance (for which a new relationconfd is de�ned).The fact that the cut relation is somewhat di�erent is evidenced by the existenceof IUT s that will satisfy �cut, but will either fail to be a reduction or to satisfy the testingpre-order, or possibly both. Conversely, there are IUT 's that satisfy the reduction or testingpreorder, but not the cut relation. Another di�erence to note between conf and confd isthat the latter allows as valid implementations path extensions; these fail the cut relationonly through failing trace inclusion.Once again, we look at conformance testing for �nite Basic LOTOS speci�cations,and we show the existence of a single test process (a canonical tester) which is able todetermine whether or not an implementation under test I is a cut of a speci�cation S. Wealso term this particular canonical tester the uni�ed tester since it is simultaneously a testerfor both confd and the trace preorder relations.



171Owing to the simpler nature of the tester, for a certain class of Full LOTOSbehaviour expressions, we are able to re�ne the tester to provide useful information aboutan IUT's (mis-)behaviour. This is achieved by enriching the set of observers so that itgives diagnostics in the case that a test fails through failure to synchronise. Further, byappropriate de�nition of the data types, we are able to realize the tester in a fairly simpleway as a specially designed LOTOS (text) de�nition.ExamplesExample 1 Any deterministic choice must be preserved in the implementation. Further, ifa choice is implemented, at least one of its branches must be implemented fully:Let S = a;b;stop [] c;d;stop, then we wish to allow the following to be a validimplementation: I1 = S, but not I2 = a;b;stop, I3 = c;d;stop or I4 = a;b;stop [] c;stopExample 2 In a composite choice with deterministic and non-deterministic elements, anynon-deterministic branch may be omitted:Let S = a;b;stop [] i;c;d;stop [] i;b;stop, then we wish to allow the fol-lowing to be valid implementations: I1 = S, I2 = a;b;stop [] c;d;stop, but not I3 =c;d;stop.Example 3 If there is o�ered only non-deterministic choices, at least one branch must beimplemented:Let S = a;b;stop [] a;c;stop, then we wish to allow the following to be validimplementations: I1 = S, I2 = a;b;stop and I3 = a;b;stop, but not S = stop(similarly for non-determinism arising through internal action pre�xes.)5.8.1 Comparison between two notions of conformanceSince in any parallel composition, the semantics of LOTOS give pre-emptive powerto non-deterministic branches, more e�ort has to be made in the design of this tester. Inparticular, successful and unsuccessful computations need to be de�ned in terms of thetester passing through more than just terminal states. We illustrate our ideas through thedevelopment of an example below, where we derive a tester for confd.Consider S=c;(a;stop [] i;b;stop). Under confd, we have that the followingprocesses conform: I1=c;a;stop, and I2=S, but not I3 = c;i;b;stop. In our tester, wegive priority to the benign choices, but in deriving a provisional T 0(S) from S, a simpleswap between non-deterministic choices and deterministic ones is not adequate: if T'(S) =i; c; i; a;succ;stop) [] b; succ; stop then SjjI2 deadlocks after both T 0(S) and I2



172perform internal actions.To allow for pre-empting, we wish to catch this behaviour in our tester: for thosebranches in T (S) that correspond to the compulsory choices o�ered in S, we do indeedspecify branches with internal action pre�x followed by the respective matching actions.Once such a branch is taken in I jjT (S), I may still perform internal actions, whence therewill be deadlock if the next action in I is not matched in T (S). However, if there is alwaysincluded such an action in T (S), then choosing I to be any optional branch in S will resultin a successful computation, whence I3 would apparently conform.A solution to handling the pre-emptive problem is the introduction of a new typeof termination 'trip' which may be reached when following a path that is only optionalin S. Special 'trip' branches are allocated in T (S) whenever there are both optional andcompulsory choices at a node SN of S: in T (S), for each choice compulsory at SN , there isgenerated an internalised branch with corresponding action; after each such action, a 'trip'branch is de�ned for each action that is initial to the optional branches of SN . Thus, inour example, we de�ne T(S) = i;c; (b;succ;stop [] i; T1) where T1=a;succ;stop []b;trip;stop.How should we use these results in determining verdicts? As before, it is clearthat we should award the �rst test composition the verdict 'pass'. However, both I2 andI3 have 'succ' and 'trip' terminations after performing traces that start with an initial 'c'action. They are distinguishable by the behaviour at the node from which the 'trip' branchwas executed, by considering whether or not the tester in its complete set of test runs couldhave performed at the node containing the 'trip' branch, some other action not leading tothe 'trip' action. This is described in the next section.A further consideration is the duplication of traces: we need to allow for cases suchas S = i;a;b;c;stop [] a;b;d;stop where we require that I1=a;b;d;stop conforms, butI1=a;b;c;stop does not. In this instance, we note that since a given trace in the testercannot dictate the path taken by IUT when it performs such a trace, more than one pathfor that trace in the tester would be super
uous, hence whenever there are traces in S thathave a common pre�x trace, we combine them into one, and then, where there is a di�erencein observable actions, the construction of T (S) takes account of the structure of S.5.9 ConclusionsIn this chapter we have presented a systematic treatment of the notions of ro-bustness and conformance in the context of process algebras, clarifying the relationships



173between already existing work, speci�cally the Observation Framework due to Brinksma etal and the Experimental System of Hennessy and De Nicola. We have developed what webelieve is a new canonical tester for the reduction preorder that is e�cient in expression.Finally, we have shown how the tester may be illustrated for a subset of Full LOTOS.


