87

Chapter 4

The provision of safety requirements from fault

trees and their validation in formal models

In this chapter we address the problem of how to link directly standard safety
analysis techniques with formal software models that are being refined towards implemen-
tation. Here, we focus on one of the most popular techniques — fault tree analysis — and
detail within a formal framework the derivation of requirements from fault trees and their
incorporation in system models. A common semantics basis of labelled transition systems
is chosen, thereby avoiding extra difficulties involved in translations.

To come closer to industrial practice, we provide a procedure that allows much
independence in the activities of building the fault tree, generating requirements and then
relating them to models. Further scope is provided through a number of consistency rela-
tions to reflect varying levels of satisfaction of requirements needed at different stages in
development. This overall flexibility allows the system builder to derive a series of mean-
ingful results, based upon a gradual and rigorous refinement of a formal model.

As described in the previous chapter, there has been ongoing work in require-
ments capture, with the use of formal methods to sharpen the analysis, but the problem of

threading through’ the results to formal models has hardly been treated.

4.1 The use of FTA for software

Fault Tree Analysis (FTA) has been accepted as a very useful part of safety analysis
for the engineering of safety-critical systems in general — they are part of ’best practice’; a
stock-in-trade tool. A definitive guide to FTA, to which we refer frequently, is the Fault
Tree Handbook [VGRHS81].

During the past decade or so, these techniques have also been found useful in

88

analysing critical aspects of systems to assist in the production of safety-related software.
In particular, a technique called Software Fault Tree Analysis (SFTA) has been developed
to analyse critical code. In [LH83], there is a general discussion of this approach and then
experiences are reported of its application to Intel 8080 Assembly code that was used for
controlling the flight and telemetry of a space craft; this project is described in more detail
in [Har82]. SF'TA has also been applied to ADA programs [LCS91].

In common with the production of most software of a critical nature, such tech-
niques may be enhanced by the use of formal methods which can remove ambiguity and
inconsistency and generally increase confidence in the safety of the design and subsequent
implementation. In the following sections we provide a summary of the technique and then
review the use of FTA for software, discussing how formal methods can help assess (and

then justify) its suitability.

4.1.1 Summary of the technique

In the safety lifecycle model, the initial stage consists of identifying hazards at a
system-wide level. FTA is a technique that provides an iterative means to determine the
events or fault (hazard) causes that lead to a top-level fault, an event which is identified
as posing some serious risk to the safety of the system. These events are deduced using
whatever brainstorming techniques are available, so FTA may in the process prompt the
discovery of further hazards at a wider level. Depending upon interpretation, a problem
which is treated in section 4.2, FTA’s may encompass a number of aspects. The three
main ones are: causality, where one or more hazards may be sufficient or necessary to
cause another one; temporality (event sequences, where a particular chain of events can
lead to a hazard); and composition (a hazardous item may be hazardous due to one of its
components).

FTA takes a top-down view, starting with those hazards which are visible to users
and successively decomposes and/or works backwards to previous causes. In so doing a
tree structure is formed — a fault tree — whose nodes are events. It is possible for this to
be an infinite sequence, so at some stage, one must decide to halt the process, thereby
arriving at primary events, which for the purposes of a particular fault tree are the root
causes (temporal and structural). These root causes are represented as leaf nodes. For each
branch in the tree, the type of choice is indicated by a logical combinator such as AND or OR
depending upon the relationship between an event and its contributing causes. Fault trees
may be constructed in stages, so an initial tree may include some behaviour of the software

without incorporating any methods of control. As the model is refined, the fault tree may

89

robot arm swings
to angle beyond
normal range

!—;I_Ig—\

Control cannot
make arm stop

control initiates
instruction fo
swing round

'Stop' command

ignored
&
=X
ﬁl
Fault in Communications
Robot response Fault occurs

‘ robot does not Error detection
robot fails to Ve ! ! i
interpret comectly Instruction fails
| stop” commond | | flenemited |

through oD
channel Q

Physical Fault
in hardware
channel

\

‘ cable is damaged ‘ foTulff in cable
interface

1

@ OR
[—

heavy object

{ falls on | oosef

\ibly connection

Figure 4.1: Part of Fault Tree Analysis for a remotely controlled robot

be expanded to account for the controlling mechanisms.

We now proceed to describe in more detail the process of constructing trees. There
are a number of useful concepts that have emerged from industrial experience over two or
three decades in the process of enlarging (or elaborating) the fault tree. We summarise the
ones given in section V of the fault tree hand book and illustrate some of these concepts
using an FTA for a robot controlled remotely via some cable, as shown in Figure 4.1. We
also make a few observations concerning interpretation issues, which we discuss further in
section 4.2.

The method starts at the top level fault and recursively seeks to generate causes
as far as is deemed necessary. Thus the proper selection and definition of events is essential
to the construction of an appropriate tree.

Thus the first ground rule (section V.7 of [VGRHS1]) is:

Write the statements that are entered in the event boxes as faults; state precisely

90

what the fault is and when it occurs.

The events are the building blocks for the trees and may be variously classified
into different types. Below is the classification in [VGRHS81] (where events are termed faults

if they are initiated by other events and failures if they are basic initiating events).

e The rectangle indicates an event to be analysed further

e The circle indicates a basic fault event or primary failure of a component. It requires

no further development.

e The house is used for events which normally occur in the system. It represents the
continued operation of the component, and its probabilty is the reliability of the

component.

e The diamond is used for non-primal events which are not developed further for lack

of information or insufficient consequence

e The ovalis used to indicate a condition. It defines the state of the system that permits

a fault sequence to occur. It may be normal or result from failure.

o The AND gate serves to indicate that all input events are required in order to cause

the output event.

o The OR gate indicates that one or more of the input events are required to produce

the gated event.

Note that not all events in the tree are faulty by themselves — those of the type

house” may act simply as propogation media under normal operation.

The second ground rule helps the elaboration of the tree through determining the

appropriate type of gate from information about the state of a fault:

If the answer to the question ”Can this fault consists consist of a component
failure?” is ”Yes”, then classify the event as a ’state-of-component fault’. If the
answer is "No”, then classify the event as a ’state-of-system’ fault.

For a ’state-of-component fault’, the handbook advises adding an ’OR’-gate with
inputs being components that can cause the fault.
For a ’state-of-system fault’, the handbook advises looking for minimum necessary,

sufficient and immediate causes using any of the gates.

91

In order to state precisely what a fault is, there are a number of aspects and issues

which are described in [Ves81], sections V.1-V.6:

(i) Fault Existence vs. Fault Occurrence

Some faults may be transient, in which case a distinction should be made between
fault existence and fault occurrence since, in particular, this has a bearing on determining
probabilities of faults. For instance, in Figure 4.1, the event ’cable is damaged’ will remain
a fault unless dealt with; however; 'Loose connection’ may be a transient fault.

However, for the construction itself, the handbook advises ”we need concern our-
selves only with the phenomenon of occurrence.” That is to say, we explore what events

may occur and treat likelihoods later.

(ii) Passive vs. Active Components

In most cases it is convenient to view components as either ’active’ or ’passive’:

e ’active’ components trigger events or event sequences (examples include relays, resis-

tors, pumps, and various control mechanisms)

e ’'passive’ components act as propagation media (examples include pipes, wires, bear-

ings, etc..)

Passive components may lie between two active ones, though this ordering may
or may not be reflected in the tree: for example, in Figure 4.1, there is the event ” ‘stop’
command ignored”. The fault may have been caused by the robot, in which case, the
occurrence of the fault is actually dependent upon the transmission media, which acts a
passive component. Here it is included as a house event "Instruction transmitted through

channel”, which site next to "robot fails to interpret correctly ‘stop’ command”.

(iii) Component Failure Categories Fault occurrences may be categorised as:

e Primary: fault occurs in the environment for which the component is intended to

operate normally, e.g. the top-level event of Figure 4.1.
e Secondary: fault occurs outside the environment for which the component is intended

o (Control: fault occurs because a component operates properly but at the wrong time

or wrong place etc.

(iv) Failure mechanism, Failure mode and Failure Effect

These concepts are important in determining the inter-relationship between events

92

o 7effects” - why the particular failure is of interest - what are the effects on the system?
e "modes” - what aspects of component failure are of concern.

¢ "mechanisms” - how a particular failure mode can occur. (the above mode has mech-

anism ’loss of data across link” and ’lossy channel’).

For example, in Figure 4.1 the event ”cable is damaged” is a failure mechanism

for the mode ”Physical Fault in hardware channel”.

(v) The 'immediate cause’ concept

This is a general view on relationship within gates between inputs and outputs
and has been subject to criticism when formally analysed.

Once a top level event (in Figure 4.1, viz: ’robot arm swings to angle beyond
normal range’) has been selected, the immediate, necessary and sufficient causes for its
occurrence are determined. The immediate causes are those events which occupy a place
just in front of the top level event - whether physically along side (or part of) or immediately

preceding in time.

These cover the essentials of fault tree construction, as recommended in the Fault
Tree Handbook. A few further rules are mentioned as the result of the experience of safety

analysts:

1. 'No Miracles Rule’: If the normal functioning of a component propagates a fault

sequence, then it assumes that the component functions normally.

2. ’Complete the Gate Rule’: All inputs to a particular gate should be completely defined

before further analysis of any one of them is undertaken.

3. 'No Gate-to-Gate Rule’: Gate inputs should be properly defined fault events, and

gates should not be directly connected to any other gates.

4.1.2 Using formal methods to assess the suitability of FTA for software

We start this section with some motivating discussion for the use of FTA for
software (the same considerations may also be applied to other safety analysis techniques).
We may ask, especially with respect to the delivery of systems with safety-related software:
How effective or faithful is a fault tree at capturing hazards or faults affecting software?

Does FTA support adequate analysis?

93

Since computers generally operate according to deterministic physical laws, much
depends on two factors: the ability of the safety analysis to be able to account for such
deterministic behaviour and a facility for safety requirements to be consequently generated
and reliably implemented in the software. Experiences as reported in [LH83] indicate that
FTA can prompt the discovery of hazards and faults that escape other techniques. As part

of the conclusions in that paper, a number of salient qualities of FTA emerge including;:

e the encouragement of a focus on catastrophic events

e the provision of a systematic approach for the consideration of the causes of these

events

e the convenient storage of information.

Even so, FTA may not be the most suitable technique for software. Indeed, re-
searchers at the High Integrity Systems Group at the University of York, have focused
attention on software structures and found that fault trees may become very large and
unweildy. They have concluded that some adaptation of FTA and FMECA is required,
resulting in the suggested Failure Propogation and Transformation Notation (FPTN) to
overcome some limitations [FJMP94]. However, it may be noted with regard to the prob-
lem of fault trees burgeoning in size, that targeting specifications more than program code
and making use of abstraction can be of considerable help.

Although some alternative to traditional FTA may well be more effective, it is
worth considering beforehand the issue of what we mean by fault trees. Only then do we
really know the extent to which FTA is effective. A precise understanding of fault trees
requires the use of formal methods; only recently have they been used to address this issue,
yet there have already been some significant findings. It should be noted their use depends
upon capturing "as best as we can tell” the informal tree, i.e. a process that requires

validation.

When FTA has been put under the spotlight of formal methods, there have been
revealed ambiguities and inconsistencies in possible interpretations that were previously not
known. It is shown in [BA93] that a given tree can reasonably be expected not to have
the required properties according to the interpretation recommended even in [VGRHS1]. In
[BCGI1], it is mentioned that there is an inconsistency between definitive sources regarding
interpretation of gates. As an answer to these two problems, in both papers it is suggested
that the user has to choose carefully between a number of interpretations depending upon

the context. In this way, the formal analysis enables one to make informed suggestions

94

regarding the conventional interpretation of trees and the consequences for software. A
more detailed discusssion of interpretation problems is given in Section 3 of [G94].

Formal reasoning is also desirable beyond the locality of individual events or gates,
to clarify, for instance, what are common failure modes and component structures. This is
important when requiring some quantification of risk through the calculation of probabilities
for e.g. minimal cutset forms (or some derivative). This work is even more in its infancy,
with one or two notable exception such as [GMW95], where formal analysis is conducted
mainly to establish under what timing constraints a top-level hazard can actually occur
from the lower level events. This is but a small step to determining the effect of a given
hazard on the reliability of a system, in which it may be difficult to know to what extent
events at different parts of the tree are independent.

However, putting aside problems of interpretation, the use of formal methods in
these papers have supported the case that wide-ranging safety-related aspects of software
systems can be captured using F'TA as a safety analysis technique and, further, the output
of the analysis can be formalised. There is still plenty of scope for establishing the useful
extent of such analysis with the need to provide more examples. This may well confirm the
need for flexibility in how a Fault Tree can be interpreted (and in turn refine the current
approaches to formalisation, reflecting the flexibility). In general, as we hope to show in

this chapter, fault trees serve as a very useful basis for generating requirements.

Since a fault tree has such wide scope, a further important question arises: “What
are the criteria that make a formal fault tree faithful to the original FTA? How do we ensure
faithfulness?” As hinted above, this is a subjective matter, open to personal interpretation
and so requiring validation. The criteria should include some notion of completeness — i.e.
every part of the informal analysis should be accounted for and, preferably, there should also
be simplicity. This may be facilitated by having procedures both for formalising the elements
of a tree (the events) and for constructing trees. An algorithm for event formalisation is
given in [GW95], but there has not yet been stated a procedure for trees. We provide such
a procedure in this chapter. We then need to derive software requirements based on the
formal FTA and show that they can be usefully applied to a formal model. This is achieved
using a common semantics basis on which are defined some relation(s) between faults and
system models, interpreted over transition systems. In this chapter we use the semantic

framework provided in [BA93]) that are to underpin our new relations defined in section 4.4.

95

4.2 Semantics of fault trees

This section reviews briefly the key elements for interpreting fault trees.

There are two fundamental semantic notions which are used to make up a tradi-

tional fault tree:

1. an EVENT

2. a GATE which relates events.

Instances of events represent faults or hazards and are the building blocks for the
trees. The first issue to address is how we regard events: either we regard them as atomic,
i.e. indivisible in some sense, in which case we can give them a simple denotation; or as
non-atomic, i.e. they may be expressed in terms of simpler elements.

In the case that events are not atomic, we need to be able to reason about them.
Doing this formally requires the task of event modelling. Work based on the CSDM model
[BCGI1, GQ4] has provided a formal semantics with explicit timing notions; an extension of
CSDM, ECSDM adds a state-based system representation for events in the manner of VDM
[Jon90] and an algorithm for event construction [GW95] (which provides some examples of
the procedure). A supporting task is the classification of events into different types, for
which one approach is based on the role of an event in a particular tree, as cited above,
following the Fault Tree Handbook. Other classifications are based on the position of the
event in a tree [G94]; and on the structure of an event [GW95].

In this chapter we wish to provide a very general framework and thus do not make
explicit any particular event model. In some cases we may model an event at a low level
of granularity and then use appropriate abstraction to follow [BA93], in which events are
formalised as atomic propositions which are interpreted as sets of states. The view chosen
should reflect the context, but generally we do not impose the requirements of atomicity

and this is reflected in some of the definitions which omit mention of atomicity.

Relating the events to each other formally requires a precise notion of the meaning
of a gate. As a general rule, one chooses semantics appropriate to the real-life situation
being analysed and modelled. As a starting point, one can look to informal notions: one
traditional interpretation of gate semantics is propositional, i.e. at any gate, event causes are
immediate, sufficient and necessary (stipulated as the 'immediate cause concept’ in section
V.6 of [VSGHS1]). In this case, duration may be incorporated in the events themselves and

temporal sequences modelled by a chain of events at successively deeper levels in the fault

96

tree. However, it is far more natural to allow temporality between events. Using Figure 4.1
as an illustration, we may draw out the following sequence of events that lead to the hazard

of a robot arm swinging out of control and possibly hitting someone:

1. The communications wire is frayed as a heavy object falls on it [this latter is itself an

environmental fault cause to be part of the fault tree]
2. A communications fault develops [due to physical degradation] and goes undetected

3. A certain instruction given to the robot arm is initiated and subsequently cannot be

stopped since there is a fault in the communications.
4. The robot arm swings without control and hits someone

We may observe that event (2) may or may not occur immediately after event (1).
However, it is likely that there is duration between events (2) and (3). Further, in the tree,
event (2) may be modelled by an AND gate with two input events (viz 'communication fault
develops” and ’communication fault is undetected’). In reality, the detection of the fault
must occur after the fault arises, so these events do not happen simultaneously. Thus, a
propositional semantics applied to the tree derived from this fault sequence would have to
use a number of unnatural squeezes, but may still be inadequate since some events must
satisfy temporal relationships with others — which cannot be cleanly encapsulated in any one
event. The Fault Tree Handbook does define ’conditioning events’ which tack on conditions
to gates, including the "Priority AND’ gates which would be able to specify the temporal
constraint of one input occurring before another. However, realistically this should carry
information about duration, which would imply temporal semantics.

In response to the awkwardness of propositional semantics in such scenarios, Bruns
and Anderson have introduced both a temporal logic and a propositional logic gate seman-
tics; the former has a simple structure for which “We assume only that a system model can

i

be represented as a transition system or as a set of sequences of states.” This approach
is readily applicable to a variety of application domains since it does not impose big re-
strictions on the event structures. However, in view of the fact that some guides such as
the Fault Tree Handbook have become somewhat definitive, the introduction of temporal
semantics to supplement or replace the propositional semantics needs more justification,
e.g. through case studies with specific examples which can only be modelled in a temporal
semantics.

Gorski et al provide in [BCGI1] a detailed event model and temporal gate seman-

tics as part of a Common Safety Description Model (CSDM). The former provides useful

97

information on how safety analysis techniques can be formalised in a way that is true to the
original intention. This is further supported by an algorithm to generate formalised events
based on the CSDM model and provides a classification of typical event classes [GW95].
But it is only one model — there are bound to be alternatives whose relative faithfulness
may be assessed. As the range of effective applications of FTA is large, then it is likely that

a number of distinct event models are required to cater for each of them.

Once event and gate semantics have been established, the fault trees themselves are
interpreted in terms of the gate conditions — for instance, if the conditions are propositions,

then the tree can be interpreted as their conjunction.

4.3 Constructing Fault trees and deriving safety require-

ments

In this section we combine the activities of constructing fault trees with the deriva-

tion of requirements.

4.3.1 From FTA to safety requirements

Assuming the foundations for development, as provided in Chapter ??, section 3.4.1,
safety requirements may be systematically derived from FTA. To recap, once the risks have
been determined for the various hazards, requirements are generated to provide integrity,
which in turn is achieved by methods of control. The requirements will usually be directed
at a selection of hazards, which may be tackled directly or indirectly. Hence, decisions have
to be made regarding for which hazards one plans to introduce methods of control and where
— trying to prevent a hazard and all its causes would be superfluous. As an example, in
data communications, error correction could in theory take place at many different points,
but usually it is targeted for specific stages or levels.

A solution of this problem requires understanding through various analyses how
events may combine to lead to a hazard. It must appeal to the context of the particular
events, informed by the representations of the hazard structures and system models respec-
tively. As described in section 3.5.2.2, the main role of fault trees is to provide a useful
basis to reason about hazards. In particular, they enable the analyst to determine where
to introduce or apply methods of control. Here we present some guidelines for this activity,
based upon consideration of the fault tree, which we assume has some formal representation.

First, one may observe that in any fault tree it suffices to cut a line of hazards

98

right across all branches (or their trunks) in the subtree that stem from the node for once
sufficient hazard causes are removed, the hazard ceases to arise. In deciding where to cut,
the next step is to consider the hazards themselves. Given the informal identification of a
real hazard, how do we find the appropriate method(s) of control in the formal domain?

In a formal model, we need to account for two aspects concerning the tree of
hazards. The first is static analysis in which one examines the structure of the tree’s
representation, where one of the main techniques is to try to use decomposition in such a
way that proving a property of a number of components enables proof of a property about a
greater system. If an individual component’s behaviour is too varied, then a higher level of
abstraction should be used that takes into account it’s interaction with other components.
Decomposition may be attempted with respect two aspects: the system and the properties.
In our example fault tree, we have that there may be a data corruption fault in the system.
Decomposing the system reveals that it lies in the upper level link interface; further, the
actual property which makes this system hazardous may be stated as an V (or) composition
— whose components are properties about where and how it is corrupted.

The second aspect is dynamic analysis and concerns the temporal ordering or
sequence of events that may lead to a certain hazard — it is possible that an error in the
data link layer may lead to the corruption of patient data, yet operate reliably again before
the corruption is detected. This indicates the delicate interplay between actions and states,
which formal models need to capture. Ideally, there should be tools that simulate any

behaviour possible in the tree.

As a general rule of thumb, following the philosophy that prevention is better
than cure, one may choose (as here) that the hazards initially selected are leaf nodes; then
successively move up the tree only when an appropriate method of control cannot be found

for a given hazard.

4.3.2 Verification and Validation

Formalisation of safety analysis, to reveal the ambiguity and inconsistency to which
— like any other informal process — it is prone, is only established through the activities of
verification and validation. Safety requirements also benefit from formalisation, and can
be treated as objects which form part of our design activities. The formal models which
incorporate these requirements in the context of their refinement towards a full software
implementation are also objects in this process.

The tasks of verification and validation are both central to our formal treatment

99

verification validation
safety analysis prerequisite: formalise safety analysis (e.g., fault trees)
check consistency of the check that the formalisation
internal components is a true reflection of
in the analysis informal analysis

analyse, using information from
the verification, to cast light
on the safety analysis

safety-related prerequisite: derive safety requirements from the formal
formal model safety analysis
check consistency of the check that the model is a true
internal components of reflection of the requirements
the model in the requirements definition,
including conformance to safety
requirements

check that the refinements | analyse the model to cast
during the design process | light on the requirements
preserve behaviour and definition

properties

Table 4.1: Verification and Validation with respect to Safety analysis and Models

of the safety analysis and the model in respect of its satisfaction of the safety requirements.
Again, they are conducted separately: Table 4.1 indicates where verification and validation

activities feature for the respective activities.

4.3.3 Motivation for an iterative approach to constructing fault trees

In this section we discuss the construction of fault trees and argue the need for an
iterative approach — a novel method that is described as procedure FTBuild in the next

section.

It is desirable that the overall process of constructing fault trees should not im-
pose any restrictions which may prevent the discovery of hazards or faults. Accordingly,
initially we do not impose any (formal) constraints on the relationships between events
whilst constructing the tree (c.f the discussion of FMECA in [VGRHS1]).

It is, however, useful to examine formally at intervals what one has done so far:

100

FORMAL MODEL

o Analysis N —— Analysis ———_ _— Analysis ———
A . M A\ A
o T % o o> R
f refine 7 refin refine / IS
formalise forynolise formalise
and relate and ‘relate and felate
requireghents requirements requirdments

A v 7
CFault Tree 1 gt Fault Tree 2 oy oyisabls FoUl e n D

Informal FTA

Figure 4.2: An incremental model for concurrent FTA and model refinement

the longer a fault tree is built up with no formal consideration, the greater is the potential
weakness of events and their interactions being subject to ambiguity. Determining the
appropriate semantics at just one gate can be a non-trivial matter, so if one extends the
consideration to events not immediately related, then the situation is potentially much more
complicated. Leaving the formal analysis to later may be uneconomical: an extreme case
would be the generation of many complex fault trees, where the formal examination of the
first one reveals some inherent weakness in the system conception, necessarily requiring its
alteration and the modification of all the other fault trees.

In view of the potential pitfalls we suggest the construction of fault trees as an
iterative procedure of constructing together informal and formalised trees, tied to the de-
velopment of a model of a system or some part. This is illustrated by Figure 4.2, which is
an instantiation of the generic incremental model illustrated in figure 2.3.

In this way, the formal analysis of the model plays a more integrated role in the
system design. The procedure retains the freedom to explore faults informally, with no
restrictions on the causes. However, once some particular gate condition is developed, it
may be formalised, validated with respect to user requirements and these requirements
further analysed in light of the formalisation, before continuing the brainstorming activity
of searching further down the tree. The advantage of this method is that before a large
tree is developed, it may be quickly realised that some faults are intractible (cannot be

avoided or tolerated without adverse effects) and may thus cast light on some deficiency or

101

over-expectation in the design. (For instance, some part of the system might require more
automation instead of a human operator). If this eventuality is reached, then the conceived
system may be changed and the fault tree modified accordingly.

Note also that this procedure allows for a model to be developed separately from
the fault tree analysis — one simply keeps skipping step 6 given below. It has been standard
practice for models to have been built separately from such safety analysis, largely to meet
prescribed functionality. Only then have they been validated a posteriori for safety-related
properties, which in many cases have not been derived from any systematic safety analysis.
In any case, if a model is fully developed without incorporating faults, it can be so complex
that the late addition of faults may be difficult to treat, no matter how good the safety
analysis. We have argued elsewhere that such a post hoc approach is inadequate for ensuring
safety [TN96].

As indication of the generality of the method, we indicate how the work of Gérski

and Wardzinski fits in the framework.

4.3.4 Procedure FTBuild for fault tree construction

This procedure FTBuild builds the fault tree in broad and unrestricted fashion,
allowing its selective formal analysis both as a tree and in terms of safety requirements
incorporated in one or more models.

Given an informal statement of user safety requirements, part of USER-REQS,
together with a requirements definition SYS-REQS for the conceived system plus some

model(s) of the system or part, FTBuild is defined as follows:

1. Select an informal fault (event) £.

2. Establish (informally) all [or some of | E’s event causes — Ey, Fy, ..., . If there are
no causes then F is a leaf node and FTBuild is completed. This is perhaps the main

brain-storming activity, really an exercise in HAZOP.
Attempting to find all the causes is advised, to be in accordance with the ’Complete

the Gate’ Rule.

3. Formalise ¥ — choose an event model and semantics; express this as some predicate

and validate.

4. Consider the relationship between the events Fq, Fo, ..., F; as regards their causing the

fault. (Note that not until all causes have been found will a relationship be complete).

102

5. Formalise the relationship as a gate condition, a predicate formulated in some logic,

with semantics chosen accordingly (and validate).

6. (optional step)

(a) formalise the whole tree and perform analysis (optional)

e If the formalised fault tree implies some poor informal safety analysis (e.g.
some inconsistency, as discussed in the next section), then this analysis needs
to be re-addressed, whence the procedures involving all those parts of the
tree’s construction affected by the changes have to be terminated and re-

invoked.

(b) derive safety-related requirements for the given model based on the formalised

gate conditions and events.

(¢) incorporate the safety requirements in the model and analyse both the suitability
of the tree and to what extent the model takes account of the requirements —
which we call property conformance (abbreviated henceforth as conformance)
of the model. Assuming that the F'TA has been validated formally, or is simply

taken as OK, them the following scenarios are possible as a result of the analysis:

i. the design appears okay, but the model is inadequate, so the model needs to
be modified — the next step taken depends upon how the model is changed.
(If the model cannot be modified in the desired manner, then it may be that
the modelling language is not appropriate).

ii. the model indicates that the conceived system is inadequate (so FTBuild
may have to be abandoned until this is modified)

iii. all is okay, so carry on with step 6d

(d) (optional) Re-iterate step 6¢ for other model(s).

These may be alternative models, perhaps prototypes, to be compared; or a

refinement, which can provide information for the expansion of the tree.
7. For each F;, perform FTBuild from step 2 and then END.

The benefit of this approach is that the fault tree is built up in a rigorous fash-
ion. One may at any time halt the construction of the tree and concentrate on deriving
requirements and/or mapping them to the model.

As indicated, reasoning about the model may lead to reconsideration of the system

conception, without need to examine the fault tree further. This interactive approach shows

103

the need for the formal analysis as part of the requirements analysis for system design. Also,
the analysis of the model in the light of the safety requirements may uncover new faults.
Further contributions to the expansion of the fault tree may be expected as the model is
refined towards implementation.

It is probably best to do the analysis of the fault tree in two stages: first, analyse
the tree for its own sake (step 6a), not least because of computational concerns; next,
analyse further when incorporating in the model (step 6¢). The requirements for these are
different: for instance, we may expect the formal examination of the safety analysis per se to
treat all the events and gates found in the tree. This may mean evaluating the conjunction
of predicates of events and gates, sometimes called the characteristic predicate, to check for
consistency. This is likely to be not too heavy on resources. In contrast, we may not expect
to perform so easily the same evaluation for a model, with a very much larger structure, so
we would need to be selective here about the events and gates we focus on.

Work that has been undertaken in the CSDM can be seen to be contained within
FTBuild as follows. An algorithm for the formalisation of an event (step 3) has been given
in [GW95], steps 4— 6a have been treated in [BCG91, G94]. Some analysis of a formalised
tree (step 6a) has been covered in [GMWO95] and the derivation of safety requirements has
been examined in [GW96].

4.3.5 Issues in the analysis of formalised fault trees

The analysis of formalised fault trees raises many issues, some general, others to

be considered in the light of a specific tree developed as far as step 6a of FTBuild .

1. consistency: a tree has traditionally been defined inductively through gate conditions
(a procedure we follow), which treat relations only between inputs and their imme-
diate output. However, we require in addition to such local conditions the overall
consistency of the system. A simple form of consistency relation has already been
mentioned: just take the conjunction of the propositions corresponding to gate con-
ditions. If such a predicate is always false then we regard that as an inconsistency.
Such inconsistency may arise if, for example, one gate condition imposes certain con-
straints on the location of some hazardous object X, whilst another gate condition
may impose other constraints which imply that X is in two places at the same time.
In this case, the safety analyst should use, if available, past experience to clarify if

and when such events can occur.

104

Thus the formalisation of just such informal conditions can be valuable in highlighting
inconsistencies in the process of constructing an informal Fault Tree. One may use
a partitioning scheme according to a particular viewpoint — e.g., using abstraction,
one can examine both horizontal and vertical consistency in addition to notions of

completeness defined in section 3.5.2.1.

2. uniqueness: for a given top-level fault or failure mode, how do we distinguish between
possible fault trees? Given a tree containing events that are specifed as known plus
token events, in those cases where there is lack of information about causes, is there

some unique maximal tree?

3. completeness: to what extent can we say a tree is complete? Can we say that for some

event, there are no further causes?

Using the notation of the Fault Tree Handbook, we may say that a tree is syntactically
complete if all its leaf nodes are primary events; it is syntactically complete ’up to the
level of information’if instead, the leaf nodes may also be diamond events. In general,

we cannot say whether we have a complete set of causes for a given event.

4. abstraction: some faults are visible to users in the environment, but others lie hidden,
deep in some component. Handling all these together would be complex, so it is
desirable to use abstraction to distinguish between (possibly classes of) events. If so,

how? What are to be the bases for abstraction?

5. computation of risk: for propositional semantics risk is computed using minimal cutset
forms but, as we have seen, this obscures durational aspects. Assuming a more realistic
temporal semantics means that one can no longer in general apply this technique,
as certain laws in Boolean Algebra no longer apply (see, e.g., CSDM examples in

[BCGI1]). In such cases one must determine alternative methods for calculating risk.

In [GMW95], formal analysis has been performed by mapping trees expressed in
CSDM to corresponding representations in Time Petri Nets. In particular, reachability
analysis is performed to show whether or not a hazard may arise from the given fault tree.
It is reasonable to expect that a similar mapping could be performed to a language based

on transition systems.

4.3.6 Generating safety requirements from fault trees

The procedure FTBuild generates in steps 2-5 events and gates as input to the

safety requirements. Having formalised and analysed the fault tree, at step 6b we have to

105

formalise requirements for events and gates, which we view as a two stage process:

1. determine which events and gates are to be used in conditions

2. determine as maps with respect to the chosen events and gates the (nature of) the

conditions which we require that the model should satisfy

For substep 2, we may choose as a mapping, one that simply maps events and
gates to either themselves or to their negation, reflecting the following statement in [GW96]

(part of STEP 4 in the Method Description):

« the hazard can be prevented if, throughout the system operation, the

software maintains the negation of the whole condition”
We may use the following simple decision mechanism to implement this:

For those events (faults) and/or gates as specified which lie outside the control of the
software being developed from our model, we stipulate that these conditions should
be satisfied by the model as they stand (i.e. that the model is fault tolerant). For

instance, such is the case for events of the kind, ‘physical component wears out’.

For those events and/or gate conditions which lie within control of the software being
developed from our model, we stipulate that the negation of these conditions should
be satisfied by the model. Such is the case for certain kinds of software elements: for
instance, we would wish to have the negation of the event ‘software routine 7 engages

in infinite loop’.

A more realistic mapping would take into account information about assumptions
which can be made about those faults which lie outside the control of the model. Typically,
certain other reliabilty measures can prevent some of the events that occur in a fault tree.

Another consideration for the requirements is distinguishing between local and
global faults. If developing a component of a system, one should distinguish between faults
of the overall system, which one is obliged to model if they impinge on the subsystem, and
faults of the subsystem. In particular, a distinction should be made between software and

hardware faults: some of the former faults are ones we expect to avoid, not tolerate.

We now elaborate the two phases below:

1. (a) Which events (faults and others) do we wish the model to take account of?

(b) Which gates do we wish the model to take account of?

106

¢ Which events among those we’ve chosen above do we wish to be involved in

the gate condition?
¢ type of gate condition? (may assume that gates may be classified into two
types)
— causal

— generalisation

Whatever selection mechanism is used, we wish to ensure that requirements
with respect to coverage of the tree are complete. We could indiscriminately
go through each event and gate and derive requirements. However, it is more
efficient to start with the leaf nodes. If we were to ensure the negation of each of
these events (or just one from each ’AND’ component) then that would ensure
that the top-level hazard does not occur (removing a necessary cause removes an
effect). In the case that we are not able to treat some of the hazards, we move

up the tree and examine gate conditions involving higher level events.

If it is not possible to systematically address all events and gates, or if one
wishes to differentiate between events, then one may apply some selection crieria
as specified in section 4.4.1.

The denotation of requirements for the real-life situation may have several alter-
natives, all of which appear suitable candidates. Not until some formal analysis
has been undertaken, can we discover which is most appropriate. Accordingly
(for non-atomic events), we can establish a one-to-many correspondence between
their informal denotation and a set of labels, each denoting a formalisation of
the event. Unless stated otherwise, we take the convention of using upper case
when we are referring to the real-life event, and using lower case when we are
referring to a particular formalisation. Normally, we choose to consider just one
formal representation at a time.

Similarly, it has already been shown that the semantics of a gate may need more
than one formal representation before it is deemed suitable: an example is given
in Section 5 of [GW95], where there is fine adjustment of the semantics of a

causal gate.

For each event selected, we determine event requirements for the model. These
are generally logical formulae which explicitly mention some denotation of the
event. Sometimes, however, it may be easier to formulate some indirect require-

ment, using some other methodology.

107

Thus the details of the requirements will depend on the formalism used; in tem-
poral logic for instance, given an event F, formalised as e, if we are using the
modal mu-calculus, we may define a function of e to represent the statement “F
is to occur eventually”; or, if we use of a logic with explicit time, such as CSDM,

we could specify that “F is to occur within ¢z seconds”.

Let Ewvents denote the set of events e in the tree, where Fvents C & with ¢
denoting the set of formulae of some chosen logic. We specify requirements using
a mapping 1 : Fvents — ®. If we use the simple specialisation above, we have

for any e, either 1(e) = € or ¥(e) = —e.

For the gates selected as above, apply a procedure similar to that for events,
though here we must pay additional attention to the semantics chosen. We define
an enumerated semantics type whose instantiation determines how we choose to

interpret the relations between events at a gate.

¢ Gate semantics
Let © denote the set of logical connective such as AND’, "OR’, ... etc
which correspond to the gate types in the informal tree (perhaps as given
in [VGRHS81]). Let Events denote the set of a events in a tree. Then the
set Gates of gates may be denoted as Gates = Q X Fvents*. Thus, a gate g
may be given as a tuple (w,out,inq,...,in,), where w € §, out denotes the
output event, and the in;, (¢ = 1,...,n) denote input events, with all events

belonging to Fvents. Each such event is a proposition belonging to ®.

Let A denote the set of semantics types for gates (covering generalisation
and causal types etc.) Then we may define a function [[]] : Gates X A — &,
which we call the semantic function. In the case that n is made explicit, [[|]
may be regarded as a function which maps from Q x Events"t! x A to ®.
For convenience, we write [[g]]x for [[]](g,A). (In practice, the domain for

events may be a strict subset of ®.)
In determining the semantics of a tree, we restrict the domain to G x A,
where G C Glates denotes the set of gates in a tree.
We allow for the case when A is understood or otherwise not specified, where
we write [[¢]] to denote the semantics of a gate g¢.

¢ Requirements relation
We stipulate that requirements for gates should themselves be gate condi-

tions. As befitting standard practice with other requirements, we regard

108

these as being originally conceived informally: even though we have at our
disposal formalised objects, deciding what we require for the software may
need some informal reasoning. Hence, the definition of a requirements func-
tion for gates is in two parts: a mapping that establishes one or more re-
quirements for each gate, and the application of the semantics function above

that determines a unique interpretation for each image of this mapping.

A requirements relation is any mapping o such that ¢ : G — Gates. For
a gate g, we say that o(g) denotes the requirements of g. A requirements
function is the application of the semantics function [[]] to o. Hence, it has

signature G X A — @.

We have allowed the requirements derived from gate conditions to be very general.
In particular, it allows complete freedom to choose which events are involved in requirements
for gates — some requirements might not even mention any of the events of g. We have
indicated earlier how formalisation of trees is useful and adviseable to reduce ambiguity.
It is arguable then that a formalisation of FTA is rendered much weakened by such great
flexibility. However this can be justified when considering that the specification of safety
requirements is a design decision, and as such is a creative process. Also, this procedure
does encourage the use of the given formulae as components in generating requirements,
so the formalisations can be retained directly. These procedures have been designed to be
general, whilst allowing for stricter domain-specific measures where deemed appropriate, so
they should be in a form that leads to validation with confidence.

As an example to support this contention, suppose that we have the gate condition
g(AN D, e, e1,e3) where e denotes "Error in Patient prescription” with e; denoting ’data
corruption’ in some communications layer. In determining the fault tree semantics, we
may choose a temporal interpretation that states that input events e; and e, imply that
eventually output event e occurs. However, from the requirements analysis we may wish
that the requirements relation o for this gate specifies that if both input events occur, then
some method of control e., say, is invoked immediately, a condition that has no reference
to e and has semantics different from ¢g. Such a very general relation gives much scope to
the requirements specifier. Hence, there is a special need for care. In many cases, we may
wish to preserve semantics as would be the case if we were to use the simple specialisation

above, where we may define that for any g, either o(g) = ¢ or o(g) = —g¢.

109

4.3.6.1 Example of Gate Semantics and Requirements Derivation

We revisit the example of the robot on the assembly line, whose fault tree is given
in Figure reffig:ftarobot, to illustrate some particular aspects of formalisation within the

procedure FTBuild.

For this example, an instantiation of FTBuild may proceed as follows:

1. Select F to be ’robot arm swings to angle beyond normal range’.
2. We determine the causes of IV to be:

I71: ”Control initiates instruction to swing arm round”

I: ”Control cannot make arm stop swinging”

3. Simply denote F by e as its meaning can be rewritten in terms of its inputs.
Similarly denote Fq and F3 by e; and ey respectively.

4.5. We now form a gate (G7. At this stage the Fault Tree Handbook would insist
that Fq and F, are necessary, sufficient and immediate causes, but, as already argued in
section 4.2, this is restrictive. Our formalisation for gate semantics allows much greater
flexibility.

For instance, suppose = {OR'/ AN D'}. Then we may choose that the set of

semantic types A contains as a start Ay and Ay to denote generalisation ’OR’ and generali-

sation "AND”:

[[(OR, out,iny,ing, ..., in,)]]x, U out == iy Ving V... Vin,

and

[[((AN D', out,iny,ing, ..., in,)]x, “F out <= iny Ving V..V in,

However, many other kinds of relations can be formulated, especially causal ones.

Thus we define a causal ’TAND’:

[[CAN D’ out,iny,ing, ..., in,)]]\, Y out == [inq]even(ing Aing A ... A inyg,)

where for some formula ¢, even(¢) is a formula in temporal that represents the
property "eventually ¢ holds”.
We apply As here and stipulate that 7 should be given by:

110

[CAN D' e, er)]y, 2 e = [er]even(e,)

We take 6b) as the next step and just consider the derivation of a safety require-
ment generated from G7. For one requirement we may stipulate a protocol feature that
ensures that at least we can ascertain the connection is up. This is achieved by requiring;:

After the control sends an instruction to the robot, an acknowledgement is
received from the robot” (which we denote as the event e,).

Such a requirement requires the definition of several other events: the issuing of any
command by F; may be denoted control.send.instr, for the sending of the acknowledgement,
we refer to F, and choose a corresponding denotation to be rob.send.ack; for the receipt of
the acknowlegement, Fj, we use the denotation, control.rec.ack.

For the requirement, we can then formulate the requirement as:

[[e1(g1)]]rs =l e. <=> [control.send.instrleven(rob.send.ack A control.rec.ack)

In words, this means that once an instruction of any kind is sent to the robot,
eventually the robot sends an acknowledgement and the control receives the acknowledge-
ment.

Further requirements o4, 09, ... may be derived in a similar manner.

4.3.7 Evaluating safety requirements

Once the requirements have been generated, they need to be evaluated in models
— step 6¢ which consists of determining whether or not, or to what extent, the requirements
are satisfied — as the evaluation of some general formula relating the safety requirements and
the model. We stipulate that the formula is in terms of predicates, which may themselves
be of any kind.

We give below an algorithm that performs this task.

4.3.7.1 An algorithm for evaluating a predicate for a particular safety require-

ment

A tree and its associated safety requirements may represent simultaneously any
fault in great detail from various perspectives of viewpoints, for instance several levels of
abstraction. In contrast, the corresponding representation in a model is more restricted —

typically choices have to be made between levels of abstraction for a given fault.

111

For a model to be valid, requires therefore some means for events and gates to be
evaluated to take this into account. We give here an algorithm FTEVAL which evaluates
a predicate for a safety requirement of an event or gate. The algorithm is applicable to any
system on which predicates may be evaluated, including labelled transition systems. Recall
that for gate requirements, the events defined may or may not co-incide with those in a

fault tree.

Notation Let £ be a set of events and let G be a set of gates. Let G’ denote the set of
gates which constitute the image of G under o. Let C denote the context of evalutation,
being the evaluation according to the set {£,G,G'}. Let G(e;eq,...,€e,) denote a gate with
output e and inputs ey, ..., e,. For distinct propositions Q1, ..., @, let ¢[d1/Q1, ..., Pn/Qr]
be the formula ¢ with occurrences of ()1, ...,), in ¢ replaced simultaneously by ¢, ..., ¢p.

Note that

FTEVAL may then be given as:

e Let ¢ be a requirement relation on events and let ¢ denote its evaluation un-
der the context C. Then for an event e € &, 1¢(e) is evaluated as the predicate
(V(e)[EVENT(e)/e], where EVENT(e)is defined as:

€ IF e is a leaf node or an output to a causal gate.

ELSE
(Vjes EVENT(e;) IF e is an output to a gate of type Generalisation-
OR,

g(OR e, e1,....e,) €G'
ELSE
Njes EVENT (e;), IF eis an output to a gate of type Generalisation-
AND,
g(AND, e eq,....,e,) € G
)

where [J is the index set for the set of inputs for output e in the generalisation

gate restricted by &, i.e. where J = {ile; € £}.

o Let o be a requirements relation on gates and let o¢ denote its evaluation under
the context C. For a gate ¢ € G, suppose the requirements relation is: o¢(g) =

Gl(eseq,...,en) € G'. Then o¢(g) is evaluated as

112

[e(NEVENT(e)/e; EVENT (e1)/e1, ..., EVENT (e,)/e,] (4.1)

Provided predicates may be evaluated in a finite number of steps, then this algo-
rithm terminates for finite trees. Further, if b and o are defined for all events and gates,
then this algorithm terminates with a value. One may view the algorithm as defining
rewrite rules; and this could be the impetus for defining new semantics for ’generalisation’,

especially for gates.

The rationale behind this definition of evaluation is that we wish to allow that an
event evaluates to true either by itself or, in the case of generalisation, through its inputs.
Similarly for gates, we wish that a gate condition holds if the relationship holds between an
output and any input event as evaluated above.

We specify that the gate conditions should be in terms of events as they stand
rather than in terms of conditions on the maps defined by % to allow two levels of require-
ments. First, we may prescribe that 1(e) holds in order to prevent the occurrence of event
e. But what if e does happen (i.e. 1(e) doesn’t hold)? Then we may use the gate conditions
defined by o to prevent it causing problems. In this way, even if a model has undesired

faults, recovery mechanisms may be stipulated.

4.4 Defining relations between models and fault trees

In this section we aim to provide relations which reflect practical needs regarding
incorporating requirements in the model. A model may be checked for conformance to the
set of requirements derived using the procedures 2a) and 2b) in section 4.3.6. Conformance
may be defined (and evaluated) according to various levels of strength through the def-
inition of one or more conformance relations which prescribe essentially the breadth (or
completeness) of requirements coverage. A second degree of flexibility is provided by the
introduction of a weaker notion, consistency, which, in addition, takes account of the fact
that the model may be relatively embryonic in its refinement; and similarly consistency
relations may be defined.

Bruns and Anderson have laid the semantic groundwork for relating fault trees
and models in [BA93]. This has included the provision of three relations between fault
trees and models which are termed ’consistency’ relations. Note that in our work we term
them more specifically conformance relations (such that conformance implies consistency).

However, the paper being just a start, has the following drawbacks.

113

First, no requirements stage is made explicit — the relations that are given simply
insist that models satisfy gate conditions without modification. We have addressed this gap
in sections 4.3 and in terms of the algorithm defined there, this omission means that ¢ and
o are defined to be the identity mapping in all cases.

Second, as two of the relations are very strong conditions and the other a minimal
condition, they are unlikely to be much use for most models in practice. In general, a given
model is unlikely to satisfy all the conditions in a tree, so we need to have the option of
being selective about parts of the tree we wish to examine. Yet, we would like as much
as the whole tree to be consistent in some way with the given model. This requires some
leeway on the model itself in terms of how it may be transformed to yield the required
conformance.

We attempt to address the second issue by providing first of all some criteria
that enable us to select those parts of the tree that contribute to the requirements. This
background helps to motivate the subsequent generalisation of the results that have been
previously derived, gradually building up towards the definition of several relations that
are more readily applicable, taking account of the criteria. We concentrate initially on gate
requirements only, and then we expand to incorporate event requirements. We start by
introducing a little terminology (from [BA93]) which we first use in the definition of a tree,

on which we may conduct various analyses.

4.4.1 Establishing criteria for relations between fault trees and models

In this section we provide some criteria for the selection of events and gates to
be used in requirements and for the requirements themselves. Underlying the selection of
requirements is the need to ensure safety which will have to be determined qualitatively
and quantitatively, covering severity and likelihood of occurrence. Assuming that there has
been more than one fault tree constructed, a further important issue is the selection of

top-level faults which one chooses that the model should incorporate.

Some criteria and related issues for a given relation are:

o criticality of fault: ideally, we would like for each event both its severity and probability
of occurrence. Although, for a given fault tree, it is the probability of a sequence or
combination of events that may happen which is the prime factor, it should be noted
that some events may cause faults in many other trees. In practice, to provide some
completeness, the severity of any fault would require reliabilty analysis plus various

inductive analyses such as FMECA to determine a fault’s consequences. Estimates

114

have to be made where information is incomplete.

o levels of abstraction in fault tree: how much of the tree should be abstracted out at
what stage in the refinement? Although fault tree analysis is nominally 'top-down’,
the causal nature of hazard sequences allows that faults have propogated not only
from lower levels, but also from higher levels, especially via interfaces. For example,
consider an Out of Range’ error on a prescription that is indicated on the display of
a bedside medical device that is part of a network of devices controlled remotely by a
central console. FTA may reveal that the error can have a fault cause in the ’low level’
physical layer, which itself may relate to some "high level” environmental factors such as
location of objects (c.f. robot example in section 4.2). In this instance, the "high level’
fault has merely been propogated in transparent fashion through reliable channels —
higher layers in the communications system. This kind of error also prompts FMECA

since corrupted data supplied to the applications software may initiate further faults.

o level of abstraction in model: a system fault may be represented at various levels of
abstraction — how do we match this up with the model? If a model is very abstract it
will model few faults and the search down the fault tree may be only shallow and/or
include few primary events. Alternatively, at a low level of abstraction, the model

may cover a lot of leaf nodes which are disconnected.

4.4.2 A common semantics for fault trees and models

We use labelled transition systems as the semantic model underlying both fault

trees and models/specifications defined in section 2.5.1.

In seeking to establish that such systems satisfy certain properties, we introduce
for a transition system 7 valuations, through a map V that maps variables to set of states.
A formula ¢ is then interpreted as the set ||q§||€ of states, which is defined inductively on
the structure of the formulae through a set of rules. A model M may then be defined as
the pair (7, V); and a state s satisfies a formula relative to a given M, written s |= ||¢||3 if
s € ||¢||5. In the case that we are applying the formulae to a model M in its initial state
S0, i.e. where sg [Eaq ¢, we call this a rooted transition system.

We add one more notation following [BA93]: for a property ¢ to hold for all states,

we use the always temporal operator defined by:

always(¢) f vZ.oN[—1Z (4.2)

The fault tree’s meaning is in terms of its gates which are predicates in some

115

temporal logic. As we are to interpret these formulae over transition systems, we require
that they hold for all states of the transition systems. Hence, the semantics of the tree is

defined as the conjunction of all gate conditions:

1] < always(A\ [lg]]) (4.3)

gE€gates(t)

where ¢ is a tree and gates(t) denotes the set of gates of a tree.

We can be explicit about gate semantics by replacing the [[¢]] term by [[¢]]s, where
A € A (as defined in section 4.3.6).

4.4.3 General conformance relations

Conformance relations between requirements and models are also evaluated as
a conjunction of predicates, but here the predicates are more general, as allowed in the
definition of ¢. In particular, in deriving our requirements, we may not wish to insist on
the use of the always operator, so we do not include it outside the conjunction. (Thus part
of the requirements stage involves deciding the temporal scope of the requirements.)

The first relation allows the user to specify which (top-level) faults and any selec-
tion of gates of the fault tree. We use the following notation: Let .5 denote the safety-related
system, ft(F') denote the set of fault trees of F'. Then in choosing various subsets of ft(}'),
for coverage it suffices to select the maximal tree, tp,q.(F) (Where Vi € ft(F).l C tpae(F),
with C denoting a subtree relation) and choose subsets of that. A function ¢ is defined to

give any selection of those trees that are subtrees of ¢,,,,(F).

Definition 4.4.1 General Conformance Relation |

Let F' C F, where F is the set of faults for S. For any fault F € F', let p(t) =
{T|T C t} and let 6(t) C p(t). Also, let { be a function mapping fault trees to sets of gates,
such that for any fault tree I', ((I') C gates(l'). Then we say that a model M conforms to
S with respect to the requirements defined by o applied to F',6 and (if:

solEm A ARGl

FeF' Te€8(tmas(F)) ge¢(T)
We write Mconf S(F',6,().

The requirements analysis may typically put forward:

116

o choose F' to be the (top-level) faults considered most important by the safety analysts,
perhaps according to criticality of fault.

e choose 6 to pick out those fault trees which are of interest to us. (E.g., referring
to Figure 4.1, F' could be ‘robot arm swings to angle beyond normal range’ and
if we wanted to concentrate on the communications system, 6(7,,.(F")) could be

accordingly a selection of subtrees that have root node ‘communication fault occurs’.

e choose (to pick out those events in a given fault tree that we wish the model to
address. Here we may use the criterion of abstraction. Such events may or may not

be adjacent to each other in the tree (see the note on abstraction and interfaces).

o choose ¢ according to how we wish the relationships between events to be reflected in

the requirements for the model.

We now define example relations. The predicates themselves may be checked
independently of the model to determine the consistency of the tree. When evaluating the
predicates on the model, they reflect a variety of specific requirements. The first two show

that this definition generalises the first two notions of consistency given in [BA93]:

1. For all gates g, put o(g) = always(g), F' = F, 6(tma(F)) = ft(F) and {(T') =
gates(I').
(i.e. when evaluated with respect to a model M, M is consistent with the fault tree

if and only if it satisfies all the gate conditions in the tree.)

2. For all gates g, put o(g) = always(g), F' = F N faults(M), 6(t,.(F)) = ft(F) and
¢(I') = gates(I').
This is a kind of minimal condition which says: “M is consistent with the fault tree iff
it satisfies all the gate conditions that involve faults of the tree that are in the model”.
Thus, e.g., if a model has one fault in common with a fault tree, but none of the tree’s

events to cause the fault, then this model will satisfy the minimality criterion.

4.4.4 Further generalisation of conformance

We provide a further generalisation of the above to the level of event in order
to allow for truncated gate conditions where either information about some faults is not

available or we deliberately choose to ignore some faults. We transfer notions in [BA93],

117

where an interpretation of a tree is given in the absence of events, to the interpretation of
a gate in the absence of events.

For a gate g, let events(g) denote the set of events specified in g. Let Bool be the
set {true, false}. Then the interpretation of a gate g € Gates, in the absence of a set of

events ¢ = {aq, ag, ..., a,} C events(g) is defined to be

lg—<1s N/ [lgllbafar,. .. ba/an] (4.4)

(b1,+sbn)EBool™
Note that there is redundancy in this definition: if g is an ’AND’-gate, we can

have the same meaning as above simply by putting (b1,...,b,) = True™.

Let € be a function that maps from gates to events specified in the gate such that
€(g) C events(g). Now we define a second generalised conformance relation which specifies
conformance in terms of a set of gate conditions restricted according to the selection of fault

trees, plus a set of event conditions, restricted according to the selection of gates.

Definition 4.4.2 Conformance I1
A model M conforms to S with respect to the requirements defined by 1 and o
applied to F',6, ¢ and € (write Mconf S(F' 6,(,€)) if:

soFm A AN ([[U(@-d@ﬂ/\ﬂ@))

FeF' Tes(ft(F)) ge(r) eeyg

Putting €(g) = 0 and ¢(2) = true for all events x gives rise to the definition 4.1.

This definition leaves open whether or not we distinguish between the same event
occurring in different parts of the tree. This is worthwhile if we wish, say, to analyse just
a single gate. In [BA93] there is no such distinction made, since the consistency relation is
defined on events over the whole tree.

Suppose t is a tree. Let 1 € events(t) be a set of events in a tree T'. Suppose e
is a set of events to be ignored for tree F'. Now the third consistency relation of Bruns and
Anderson is subsumed by putting:

F' = Fn faults(M), 6(tpna(F)) = fHF), ((I') = gates(T'), for all gates g,
o(g) = always(g) and E € ¢(g) iff £ € ep.

4.4.5 Consistency relations for models undergoing refinement

In this section, we consider briefly how greater flexibility may be introduced to

take account of the fact that the requirements and the model may be at first glance far

118

apart. In Chapter 3, section 3.6.2.2, the notion of consistency between specifications (or
models) that has been defined by Bowman et al was introduced into the CM framework.
That notion defines specifications to be consistent with each other if each can be refined in
such a way that they can merge into the same implementation. Here we treat the comple-
mentary problem of consistency between models and requirements. Unlike the definition

for consistency between models, the notion introduced below keeps one side fixed.

Let us refer again to the incremental model given in figure 4.2. So far we have in
effect concentrated on developing relations which match side by side fault trees and models,
as indicated explicitly by the 'mapping’ arrows. A more flexible view is to realise that any
object can implicitly be related to any image. Thus we can define relations for a model that
is relatively behind, or level with or in advance of a set of requirements.

In particular, the conformance relations above insist that requirements are satisfied
for every event and gate and thus are aimed at models at the same level as the requirements.
This can be restrictive: consider the case where we are just starting to build a model using
stepwise refinement. It is likely that the initial versions of this model will conform to only
some of the specified requirements. Now consider the case where a model is relatively more
developed than the set of requirements. There we expect that certain simplifications of the
model would be necessary before a model could satisfy all these requirements.

Another series of relations may then be defined, all placed in the context of re-
finement. We consider a trajectory (or refinement path) to be a sequence of models, whose
initial member is the most abstract model, with all other models being some refinement of
the previous one. In our general definition we do not specify what we regard as refinement
— that can be made explicit when the modelling context is chosen (e.g process algebra).

Thus, we may consider relations in which a model belongs to some trajectory in
which one of the models does conform. We call such relations consistency relations, with

consistency defined in an existential manner. Then we define:

Definition 4.4.3 General Consistency Relation

A model M is “consistent’ with the requirements defined by 1> and o applied to F', ¢,
¢ and € (write Mcons S(F',6,(,€)) if it belongs to a refinement trajectory T containing
some model M' such that M'conf S(F',8,(,¢€).

We may be more explicit by following the definition of consistency in the previous
chapter: let SPEC denote the set of all models (or specifications) and let ref C SPEC x
SPEC denote a refinement relation. Then the statement “belongs to a refinement trajectory

7 containing some model M'” may be replaced by “IM’ € SPEC such that Mref M’ or

119

M'refM)”. That is to say, given a set of requirements, Req, then there exists a set M p,, of
models which conform to the requirements such that: if M is a model that is at a relatively
early stage in development, then we expect to refine it towards some M’ belonging to M p.,.
On the other hand, if M is at a relatively late stage in development, then we expect to show
that it has been refined from some such M’. The definition can be specialised if, say, M is

always intended to be a refinement of M’. Then M is ”consistent” with respect to Req if

and only if MrefM’'.

The problem of existence, if tractible, is probably solvable in most cases by running
some algorithm to actually determine in some exploratory and computationally expensive
manner a model that conforms. This approach is thus unlikely to be very practical. Further,
such an approach does not respect the essentially creative aspect of the design process
involved in building a model

A weaker approach to consistency is to see if one may simplify the requirements
using one set of operations or the model using another set of operations so that there
is conformance at some specified level. The kind of simplifying operations that may be
defined will depend upon the languages used for formalising the fault tree and the model
respectively.

The task of simplifying the requirements consists of redefining conditions in terms
of a reduced sets of events and gates, and the way we reduce the selection depends upon
the structure of the tree. Suppose we know which events)y and gates Gys the model is
supposed to incorporate thus far. Let ¢¢ and Gs denote those events and gates for which
safety requirements have been established. Then one can check for consistency by testing
conformance on the requirements of epsNeg and Gay NGs. This is in the spirit of the second
consistency relation of [BA93].

However, if one is not sure of the events and gates treated by the model (which may
especially be the case if the safety analysis and modelling are conducted by two separate
people or teams), then we need some other approach. A very general method is to treat
this not as a 2 valued decision problem which reduces to terms of yes/no for a specific
conformance, but rather a function which gives a status of the model, telling us to what
extent a model conforms (or is consistent). Ideally, we’d like this deductive process to
determine the largest subset of requirements to which the model conforms. This may be

achieved by appropriate selection of simplification operations on the requirements.

120

4.5 Conclusions

We have provided in this chapter a methodology for generating requirements for
formal models from making appropriate use of fault tree analysis, one of the traditional
safety analysis techniques. There are two main pillars to this: a procedure which spans
formal fault tree analysis through to requirements derivation and incorporation into a model;
and the extension of existing theory to support the validation of requirements. The work
has shown, amongst other things, that safety-related properties really can and do have a
system basis. Also, as an indication of its viability, many of the usual theoretical issues in
formal methods are raised quite naturally.

Even for simple examples, it is evident that determining where a model has failed
a requirement is not always straightforward. In order to be able to develop a fault tree
in a helpful manner, with penetrating hazard analysis, it becomes important to have a
well-structured specification in order to isolate causes of problems. The success of the
procedure is also largely dependent upon the proof techniques for verification and validation
— conformance relations fail to hold where proofs cannot be shown using a given set of

computational resources.

As this chapter is principally concerned with establishing relations between fault
trees and models, issues surrounding the safety requirements analysis irrespective of models
were not developed further. However this would be useful: in particular, it would be
interesting to map fault trees to a transition system model for validation, analagous to the
process that has been carried out to Petri Nets. Assuming that this can be done, then
state reachability analysis may be performed in one or more of a number of tools available.
For complex trees, many of the tools support techniques for simplifying the system, whilst
preserving properties, techniques which have been commonly applied to the analysis of
system models. One might also wish to perform ’what-if” analysis by altering some of the

event or gate conditions to supply information towards appropriate methods of control.

121

Chapter 5

A Theory of Robust Conformance Testing

5.1 Introduction

A standard technique for contributing towards the assurance of integrity for safety
critical systems is the use of testing. In industrial practice, testing procedures have be-
come well developed through experience. They can have distinct roles: verifying that an
implementation conforms to a specification or validation with respect to user requirements.

For safety, a key issue is robustness, the ability for a system to operate dependably
in all operational circumstances. It may be possible to determine this through exhaustive
testing so that all eventualities are accounted for, but generally this is not the case since
testing is a time consuming activity. However, selected aspects may be more amenable.
Perhaps the most penetrating aspect of testing is its ability to target certain modes of
operation to uncover faults, which can certainly contribute to the ascertaining of robustness

or otherwise.

In this chapter we start with a general introduction to testing, illustrating some
of the ideas in an informal manner. We then proceed to treat testing in a formal software
context, whilst retaining an engineering-style perspective. This view acts as a backdrop to
the context of the specific Formal Description Technique (FDT), LOTOS, so that testing
in the formal context is also related to testing in the physical world. On the other hand,
there is also some discussion as to how testing in the formal setting can serve as a basis for
a testing strategy for physical realizations.

The foundations of the chapter are: a testing framework due to Brinksma, Tret-
mans et al., a notion of what a test or experiment actually is, due to Hennessy and De Nicola,
notions of conformance and robustness, as characterised by Brinksma, and the careful con-

sideration of their relation to testing relations of Hennessy and De Nicola, culminating in

122

a proof that the reduction preorder may be characterised in terms of may and must tests
(defined later).

After this backbone has been established, the main investigation is conducted.
This concerns the derivation for a restricted class of LOTOS behaviour expressions of a
proposed single (canonical) tester for the reduction pre-order (a well-established relation).
This is designed in such a way as to allow a method for implementing it as a LOTOS process
definition. Further, this tester is unifiedin the sense that it is designed to test simultaneously
for robustness and conformance, in contrast to, e.g., [BALTR9], where testing for each is
done separately.

This chapter assumes some knowledge of LOTOS, for which a brief introduction

was given in chapter 2 and a proper tutorial given in [BB87].

5.2 Background to Testing in the Formal Context

In this section we consider standard engineering views on testing and describe the

formal analogue, contrasting the two as regards environments for testing.

Testing consists simply of supplying certain input(s) into a system during its ex-
ecution and observing the response of the system - the outcome. This is normally with
the intention of comparing the response with some given expectation in such a way that
some definite statement may be made about the system. Test outcomes are thus assigned
valuations or verdicts to indicate this. Typically, there may be three verdicts — "success’ (or
'pass’); failure’; and ’inconclusive’. In such a scheme, either of the first two occur when
there is some output from which one can deduce some property of the system, whilst the
last occurs when either there is no output or the given output is insufficient to determine
an aspect of a system’s behaviour.

The notion of testing as an input—output function is standard for programming and
physical devices which both receive input from and pass output to an external environment
(such as a human operator) via some interface. However, formal modelling languages such
as process algebras are not programming languages and do not ’compute’ functions in this
way. Nevertheless, even though ’input’ does not come directly from an external environment,
we can certainly simulate this through the modelling of tests. In this context we refer to
testing implementations with respect to certain properties we wish them to satisfy. We refer

to physical systems that are to satisfy such properties as realizations.

Many railway stations have automatic ticket vending machines which accept coins

and notes and issue change. Suppose you test a prototype machine by buying on several

123

different occasions a ticket for 70 pence by feeding in a pound coin. The tester may know
nothing about the internal behaviour of the machine, so it is quite possible that the change
given will be, on one occasion, 3 10p’s, on another 10p and 20p, and on yet another nothing
(because there’s no change left)! This is an instance of non-determinism.

The execution of the test may yield either deterministic or non-deterministic be-
haviour. In the former, when a test is applied the response of the system will always be
the same. For a non-deterministic system, at least one of the actions performed will be
completely up to the system being tested, lying outside the control of the tester. In this
case, the response may vary: applying a test may yield some satisfactory behaviour on one

occasion, but deadlock on another.

Testing depends upon taking a viewpoint. Here we treat the system under test as
a 'black box’ whose responses to tests may be observed only externally. Responses may then
be characterised as having two aspects: sequences that are accepted (information collated
‘off-line” as it were) and responsiveness at a particular instance to extending the test ("on-
line” information). Hence, the system’s behaviour can be described completely in terms of
the response to tests of two types — acceptance tests and rejection tests. An acceptance test
seeks to determine if the system accepts a given set of interactions with the environment.
A rejection test seeks to determine if the system rejects a set of events in a given state.

Testing may be made comprehensive through the use of a suitably complete set
(or suite) of tests. Further, it may be possible to design a single test to have the same power

to discriminate as a test suite — as is the case for canonical testers.
Formal methods provide the following benefits as regards the use of testing;:

e The use of formal methods prompts the careful planning of a testing strategy for the

realization, well in advance.

o Formal testing can reveal important information about subtle aspects of the behaviour

of system being tested.

e Purther (and hence), the analysis of formalised tests contributes information towards

the kinds of tests that should be carried out.

For example, the use of formal methods can be very useful in planning the ver-
ification of the correct installation and performance of hardware components and their

configurations on which the embedded software depends.

124

5.2.1 Testing as an alternative validation and verification activity

Some observations can be made as regards the use of testing as an alternative
verification and validation activity to other methods. Regarding the formal setting, testing
has a number of advantages over other traditional verification techniques, which check

properties of implementations:

o Testing allows analysis of an implementation without the tester having to know its
structure; though, in current practice, most automated tools require some representa-
tion of the Implementation Under Test (IUT') in order to subsequently check testing-

based relations.

e Consider the task of realizing a formal model as a physical implementation. Some
non-testing based relations for the models cannot be applied analogously to physical
entities, so these cannot help in verifying that the behaviour of the physical imple-
mentation meets its specification. However, one can use testing strategies that have

been applied earlier for the models.

o Testing offers flexibility in the strength of properties that are to be shown — from
demonstrating that an implementation can possibly execute a certain sequence of

events to the proof that useful pre-order relations hold between it and the specification.

Testing allows partial verification and validation in the cases of large implementations

which are subject to state explosion.

e The use of observation composition (specifically parallel composition in process al-
gebras) offers the potential to yield a good deal of information through appropriate
design of the test. For process algebra, the composition is a specification itself which
may thus be simulated, thereby revealing much more diagnostic information than

many model checking tools.

However, there are some difficult practical problems associated with testing of the

physical implementation, which the formal developer needs to bear in mind. A couple are:

¢ How does one know that every outcome has resulted? Even though, one has applied
every possible test in the test suite, it may never be established conclusively that all
the behaviour of the physical realization has been accounted for — e.g., in a vending
machine, you offer 20p on one occasion and got a chocolate; but how do you know

that next time you will get a chocolate also? In practice, some non-deterministic

125

behaviour may be masked. A compromise solution to this is to conclude after n
duplicate responses from applying the same test sequence, that there is no further

(non-deterministic) behaviour possible.

e How does one know that deadlock has arisen? (Consider that you put in a coin and
it disappears from view and gets stuck). One way around this problem is to assume
after a certain delay that deadlock has arisen. In this case, divergence caused by an

infinite internal loop is considered tantamount to deadlock.

5.3 Some testing notions illustrated formally in LOTOS

The theory of testing for process algebras was originally developed in a very general
theoretical setting, as covered fully in [Hen88]. Within the LOTOS community attention has
been focused on formalising intuitive notions of what constitute ’valid implementations’ with
respect to testing and to construct appropriate test suites derived from specifications. It is
an approach which is generally used to demonstrate selective aspects — partial verification
and the satisfaction of particular properties — with generally less expense on resources.
Hence relations between successive implementations may be verified, though not as strong
as those which may be shown by working directly with the specification.

The main thrust of research in testing LOTOS specifications has been to implement
formally the methodology of conformance testing [ISO89c]. Conformance is one notion of
valid implementation which, in small cases, may be enhanced to ensure robustness, as
discussed in this chapter. Here we employ a formal notion of testing, which fits within a
general framework of formal testing presented in [ABe™90, BALT89], and for which a more

recent presentation is to be found in [Tre94].

In LOTOS we represent an input (or environment) simply as another process —
a test process (or tester) T. A test consists of composing 1" in parallel with the IUT).
A trace, being a sequence of events as a result of executing a process — being here the
composition — constitutes interaction in this process algebra context. OQutcomes are either
finite computable traces of a certain form, with verdicts ’success’ or ’fail’, or traces which

provide no useful information, possibly incomputable, with verdict ’'inconclusive’.

5.3.1 Test Requirements

For tests to be effective, requires the consideration of two parts: the design of the

tester and the amount of synchronisation — on a set A, say — stipulated in the composi-

126

tion. The latter is an important factor that contributes to the strength, being the level of
constraint on the behaviour that results in executing the test. Regarding the design of the
tester, the first decision is its set of events (sometimes called label set). Testers typically
reflect some user requirements and can vary from containing just a few events to all those
in TUT plus some others. If TUT is some implementation with respect to a specification 9,
then we denote by T'(.5) (or just 7" where S is known) the tester has been derived from 5.
TUT may have extra events which are implementation details that are not in 7T”s label set.

We use some extra events, F say, which we call flags, used for determining verdicts.
The tests are designed with flags being triggered on reaching certain states, typically after
certain traces are performed, from which we may draw conclusions. ITUT is not obliged to
co-perform events in T unless they are stipulated in the synchronisation. Thus, in order
to minimise inconclusive verdicts through the synchronisation, the general practice is to
require that all observable actions are in the synchronisation set A. Note that this makes
the assumption that we know a prior: what are the actions possible for IUT. In our work
we make the slight refinement of defining A to be the set of all actions in both IUT and T,
but not in F.

For LOTOS processes in general, non-determinism arises when there is a choice
with offers of identical actions and/or of the internal i action, the latter we call compulsory,
and possibly arising through the hiding of some observable action(s). When a test possesses
such behaviour, there may be a wide variety of possible execution paths, so there needs to
be a way of ensuring that each path is accounted for.

In summary non-determinism may arise if a node contains the following choices (@

is an event, i is the internal action, P and @ are processes):

Case (i) (a;P) [] (i; Q)
Case (ii) (a;P) [] (a;Q)
Case (iii) (LP) [] (i

S~—r

Otherwise the behaviour is deterministic (insofar as guards and predicates asso-
ciated with actions may be resolved) and we say that any choices are benign or mutually
optional. In any choice, all those branches that do not have an internal action prefix are

termed optional.

It is often the case that when the structure of a formal implementation (model) is
known — it may well be given as a process definition. This is where testing a model is easier
that testing a physical implementation since the only way to know completely all possible

behaviour is to open it up — often impractical for a device, but tractable for a model. This

127

also emphasises the importance of working out a testing strategy at an early stage: the
conformance of the physical implementation can then be carried out based on the formal

testing strategy.

We list more systematically these ideas for the design of test processes. In partic-

ular, we include diagnostics for cases of failure.

Notation Let the set of flags F be partitioned into two: Fyy.. indications of success and
some others Fy;q, which are used for diagnostics when there are failures. Let S be a

specification and Act(5) denote the set of actions belonging to 5.

Through a test process T, say, we wish typically to test whether certain behaviour

is viable. In order to glean as much information as possible, we may construct 7" to be:

1. Applicable — we require that apart from flag events, T' can only perform actions

belonging to 5, i.e. Act(T) C Act(S)UF

2. Discriminating (where necessary) — if a tester is to test for multiple behaviour, it
needs to deduce the choices possible in TUT for this determines what transitions are

optional and what are compulsory.

3. Terminating — to avoid superfluous non-terminating behaviour, where possible, every
trace in T is either of finite length or infinite due to one or more recursive loops
of finite length (this is acceptable for testing some kinds of liveness when it is not
known beforehand how many iterations of the loop are required for IUT to eventually
perform certain behaviour). We say that 7' terminates when its execution sequences
(or traces) cannot be extended. We call such traces mazimal and say that 7' has

reached a terminal state.

4. Conclusive — we construct T such that the last action of all maximal traces is in
F and denotes either a successful or unsuccessful test execution. We call a maximal
trace with last action in Fguee a successful maximal run and say that T terminates
successfully. We allow failures to be included in maximal traces in order to design
testers which provide diagnoses. (If the test composition terminates before a flag is

raised, this denotes failure).

We apply these principles later in the design of the unified tester for the reduction

preorder.

128

5.3.2 Test analysis

To draw out worthwhile conclusions about the specifications being tested, the
analysis of the tests categorises test executions.

The semantics of LOTOS dictate that in the test composition there must be com-
plete multiway synchronisation on all actions specified within the parallel operator. This
enables us to infer information about the behaviour of IUT by selecting an appropriate T to
act as an ’environment’. With A and T constructed as above, we have that the observable
traces of the resulting test composition are traces of IUT’s external behaviour. If a trace
of IUT cannot be extended by a further observable action to match one in T, then the
composition will subsequently deadlock.

This mechanism of synchronisation enables us to design T to show whether or not
TUT possesses a particular trace, typically some desirable or undesirable behaviour. If we
apply points 3) and 4) above, we simply look for indications when deadlock arises (indicated
by stop) — if T has reached a successul terminal state, then we draw a verdict 'success’;

otherwise, we draw a verdict of *fail’.

Definition

i. Given a specification S and a test T, T has a may response when applied to 5 if it
terminates successfully for at least one execution of the test composition.

ii. Given a specification 5 and a test T, T has a must response when applied to 5 if it

terminates successfully for every execution of the test composition.

For T and A as above and IUT representing S this implies:

e if T has a may response, then there exists a trace ¢ in IUT, which is some maximal

trace t in T with the last action (flag) removed.

o if T has a must response, then every trace ¢ in IUT which is a subtrace of some ¢ in

T, may be extended to t, except for the flag action.

If T does not have a 'must’ response, then provided it is computable it will fail for
at least one of its executions: either it will deadlock or it will terminate, without raising a

flag in Fyyee, i-6. in an unsuccessful state.

Definition MAY and MUST tests

For a specification S and a test T', a may (must) test is defined to be the evaluation of the
predicate T has a may (must) response when applied to S with valuations ’success’ if this

predicate is true; 'fail’ if this predicate is false; and ’inconclusive’ otherwise.

129

The ’may’ and 'must’ tests are generic — they may be applied to any range of test construc-
tions, some of which are defined below. Note that in the case that T is just a trace, where

TUT is deterministic, there is no difference between a 'may’ and 'must’ test.

5.3.3 Some example testers

We give below some examples of testers, following the design criteria above. These
are only a subset of possible LOTOS behaviour expressions and are expressed in a particu-

larly simple form.

1. Sequential Tests

Sequential tests are those tests where T is defined to be a single trace. This is also

called trace testing.

process SequentialTest [... < gates > ..., success] : exit :=

<action_1>;

<action_2>;

<action_n>;

success; exit

endproc (* SequentialTest *)

2. Property Tests

Property testing consists in testing the satisfaction of more general behaviour,
where T is a general process, usually more than just a trace. The four criteria above are
applied for these kinds of tests, which vary as much as the variety of LOTOS behaviour
expressions.

One kind of property test is a refusal set test, which checks if a set of events £ is

rejected in the state where it is applied [Bri87]. It is a process which consists of a number

of choices, one of which offers initially the ’success’ event, whilst the others offer initially

130

those events to be rejected. It may be used in conjunction with a trace test which consists

of a trace which leads up to the state where a refusal set test is to be applied.

The use is maximised if &£ is specified to be the complement of allowable actions

in the set of all observable actions.

Applying the definitions above, we have, e.g., a may sequential test evaluates to
success’ if T terminates successfully, having executed a desired trace of 5. Larger tests
may be regarded as consisting of a suite of such tests.

A "may’ test (of the refusal set test) is unhelpful as it is always satisfied, but
a 'must’ test is useful for it indicates whether or not the set I' is rejected whatever the

executions in IUT.

There is an informative paper on trace testing and property testing in [CG93],
where safety and liveness properties are specified and tested using LOLA[Lla91] for the
service definition of the ISO Association Control Service Element. This is an interesting
alternative to the use of temporal logic, which is a common technique for validating such
properties, generally favoured due to its expressiveness. However, an advantage of testing
drawn out in that paper is the great flexibility in the choice of testing scenario, particularly
the handling of data values. A similar testing approach is used in [Tho94] to highlight how

process algebras revealed errors in the design of a safety-critical medical application.

5.4 A generic formal framework for Testing

In this section we put testing on a sound theoretical basis and show how it can

tackle more comprehensive validation, called in this context conformance.

A special framework needs to be set up for the formal theory and methodology of
testing and conformance. The nature of testing is such that we cannot work directly with the
specification but can only deduce properties of the specification (and its formal description)
through observing its behaviour in a given environment. Thus a formal framework has to
operate at two levels: when analysing an implementation under test (/UT") for conformance
to a specification 5, we seek, at the principal level, to establish implementation relations
between IUT and 5. We achieve this through performing at another level analysis based
on the observation of tests to deduce whether or not an implementation relation holds.

Underlying our approach is the observation framework due to Brinksma et al.
[ABe™90, BALT89] which formalises testing in a general way so as to be suitable for a wide

range of formal languages, including the Formal Description Techniques Estelle, LOTOS

131

and SDL [Tur93]. Within the observation framework we fit a testing system for process
algebras — the Fzperimental System due to Hennessy and De Nicola [Hen88]. In the latter,
there are some useful points as regards the kinds of behaviour any testing theory needs to
consider, especially non-determinism — where, over a number of executions, the TUT may
respond in various ways to the same test.

In order to establish formally the link between observations of a specification’s
behaviour and its actual formal expression, the framework involves constructing an obser-

vation relation to operationalise the corresponding implementation relation.

5.4.1 Notions of conformance and refinement

Given a specification 5, what do we consider is a valid implementation IT Can
we test this and, if so, how? What do we mean by testing? How can we formalise this
and what formalisms would lend themselves realistically to proof of validity? What are the
methods of proof? The consideration of such questions has led to a theory of conformance for
'valid implementations’ and a theory of conformance testing for demonstrating conformance.
The work has been extensive: the formalisation of testing has required the consideration
of formal relations between designs and a variety of different notions of implementation
(e.g.s [LOTI2b, BSS86]). This has led to assorted testing relations, notably pre-orders
and equivalences for process algebras in general [NH84, Hen88] and LOTOS in particular
[Bri&7, BSS86]. Further on, work has been done on the derivation of tests [Bri89, ABe®90]
and various methodologies for derivation (e.g.s [Wez89, HvB94]); an application of one such
method (CO-OP) to a case study is reported in [WBL91]. An overview that covers most of
these developments is presented in [Tre94].

We follow largely the material in [Hen88] and [ABet90, BALT89]; in the former
Hennessy provides some useful elements to be considered in any formal analysis. A formal
notion of testing is presented for process algebras, using their framework (recapitulated in
sections 5.4.2 and 5.4.3) which is based on the principle of observation of the behaviour of

a specification — for this is fundamental to the nature of testing.

The set of conforming implementations for a given specification may be infinite, so
to be practical this set may be specified indirectly using a formal relation and a behaviour
specification (model-based specification), or a requirement specification (logical/axiomatic
specification) [Tre94]. The former is a set of behaviour expressions determined by a relation
between behaviour expressions, whilst the latter is the set of behaviour expressions such

that a given set of properties, formulated in some language of logic, are satisfied. The work

132

conducted in Chapter 4 dealt with safety requirement specifications; the material below
deals with behaviour specifications.

The theory that has been developed supports a stepwise refinement which may be
regarded as starting off with a (potentially infinite) set of implementations conforming to .
and gradually reducing this set by imposing extra conditions related to behaviour and/or
properties. By defining appropriate relations, consistency between successive refinements
may be demonstrated by testing.

Here, we choose that specification and implementation are relative notions in a
hierarchy of system descriptions, where we define that one description is viewed as an
implementation of another description, the specification, if the former may be observed to
result from the latter by essentially resolving choices that were left open in the specification.
This notion of implementation appears fundamental; it has been formalised in a wide variety
of settings, having been first described for processes in [BHR84], and subsequently treated
in the context of LOTOS (as the reduction relation) in [BSS86]. Implementations in this
sense may be characterised by two intuitive notions of what is a valid implementation I of

a specification 5

CONF1 Everything prescribed by 5 should be implemented in I,

CONF2 Everything that I does must be allowed by §

Both of these are subject to interpretation. For the first condition, which is one of
conformance, we take the contrapositive: “whenever I can refuse something then 5 must
also be able to refuse it”. The second adds robustness, for which one may provide the
interpretation that / cannot engage in (extra) behaviour which is not specified in 5. This

can be thought of as analogous to requiring ’clearance’ for any action.

5.4.2 A formalisation of behavioural conformance

In this subsection we quote from the work in [ABet90] to define the requirements
for a formal behavioural conformance, widely applicable, though with process algebras
especially in mind.

We refer to specifications as behaviour expressions. For two expressions, By and
Bs, to have (formally) the same behaviour we write By &g B, where ~p is some equivalence
relation. We stipulate that such a relation may be factorised into pre-orders (i.e. relations

that are reflexive and transitive) <p:

133

By ~p By <—= By <r By AN By <p Bj. (51)

The pre-orders <g may be used to express ’is an implementation of”, which then
gives equation 5.1 the intuitively pleasing meaning that By and By are equivalent if and
only if they have the same class of implementations. Henceforth we refer to < as an

implementation relation when the above interpretation applies; in that case we define

Implp(B) = {C|C < B} (5.2)

Thus, given a behaviour expression 5 that specifies some system, the conformance
problem is to determine whether the behaviour By of a given implementation I of 5 is valid,

i.e. whether By € Implgr(9).

5.4.3 Observers and Tests

Testing, unlike standard verification, does not work directly on behaviour expres-
sions themselves, only behaviours. Testing only allows us to deduce information about the
behaviour expression of [itself. In this section, a language of testing is set up (quot-
ing from [ABet90]) concerned with observations of behaviour and which is then tied in
with behaviour expressions themselves. A framework is constructed which enables external
validation of implementations satisfying the relation <p. To achieve this requires some
operational procedure to demonstrate satisfaction on the basis of observations of the be-
haviour of implementations. Hence the relation <g should be understood not only as a
relation between behaviour expressions, but also as a relation between black box processes

whose behaviour (to be revealed) can in principle be described by behaviour expressions.

We define an observation framework as a triple (Q,%,|F), where Q is a set of
observers, ¥ is a set of observations, and |F is an observation composition. The behaviour
in this composition, like the observer O and/or observed B, can be non-deterministic. The
set of observations that result from O regarding B is defined by |, which constitutes
interconnection between behaviour expressions. It can be interpreted as a mapping: if
Behp,,. is the set of behaviour expressions of observed processes, and Behgq is the set of

behaviour expressions of the observer processes, then |- is of the type

|F: Behp,o. X Behg — P(Y), (5.3)

where P denotes the power set.

134

Having introduced these definitions for testing in the observation framework, the
operationalization of an implementation relation <g is determined by an observation rela-
tion dp C P(X) x P(X), which we intend to be the means for actually showing through
observation of external behaviour that an implementation relation holds. At this point, if

we start with <g already in mind, then we need to consider:

o Is <p testable, i.e. does there exist a < g such that the implementation relation holds?

o [s <p computable through <R, i.e. does the observation relation lend itself to estab-

lishing relations subject to current computing resources?

Alternatively, <p can be defined by starting with <1 g, in which case one needs to
look at the strength of <1p. Historically, the testing theory has followed somewhat later
than other non-testing based theories, where already many <p’s had been defined. Perhaps
the first theory of testing, based on observation, was developed by Hennessy and De Nicola
— their Experimental System. It is this system which we re-examine later in the light of the

testing framework.

In any case, we stipulate that <1p is an observation relation for <p when:

B1 SRBQ <~ VOEQBl ||_O<]RB2 ||_O (54)

Hence

B eImplp(S) <= B<pS <= VOe€Q:B|FO<drS|FO. (5.5)

The problem of whether or not an implementation is valid according to the relation
<p may thus be decided by using valuations of the composition |- for each observer, which
correspond to whether or not the observation relation <1 holds. For this we introduce

verdicts through the definition of a family of mappings

{vo,r:P(X) — {pass, fail}}oeq (5.6)

with

pass ifV aQr S |F O,
vo,r(V) = { (5.7)

fail otherwise

This allows us to reformulate 5.5 as:

135

B e Implr(5) < YO € Q :vo r(B |F O) = pass (5.8)

That is, under the implementation relation, B is an implementation of .5 if and

only if all the results of every observation composition have verdict pass.

Note that where R is understood, we may the notation vo g may be simplified to

vo (an assumption made in [BALT89, ABet90]).

Finally for this section, we define what it means for an implementation relation to

be testable:

Definition (testability)
Given an observation framework, (Q,Y,|F), an implementation relation <pg is
testable if for all behaviour expressions B there exists a set of observers), an observation

relation g and a verdict function v such that for any behaviour expression B’,

B' € Implr(B) <= YO € Q :vor(B'|F0) = pass

It may not be necessary to use the entire universe of observers to determine whether
or not an implementation relation holds. If a subset exists which can do this, we call this

set a test suite, which is formally defined as:

Definition (test suite)
Given a specification S, a test suite for Implr(5) is a family of pairs {< T, vy >

Yren with I C Q and {vr}ren a family of verdicts such that:

B' € Implp(S) < YO € L : vo p(B' |F O) = pass

Where the vy is understood, we denote a test suite by its index set, II.

5.4.4 Incorporating an Experimental System due to Hennessy and de

Nicola

In this section we show how the observation framework can incorporate the testing
system called the FExperimental System, due to Hennessy and De Nicola, and which is
described in detail in Sections 2.1 and 2.2 of [Hen88]. This system provides the basis
for operationalising the implementation relations in which we are interested and which
are treated afterwards. It characterises testing in terms of 'may’ and 'must’ tests. To

recap, our work is on the development of observation relations as the basis for notions

136

of implementation, i.e. on the RHS of (5.4), focusing in particular on the nature of the
observation composition.

The link has already been shown briefly by Brinksma et al in [BAL'89], using a
set of observers defined to be all processes with states marked as either succ or unsucc.
Here we provide fuller coverage, showing where everything fits in. We also define a few

extra terms to anticipate later developments.

In the framework, we regard © as a set of processes — testers (or experimenters),
and |F as the result of executions of (parallel) compositions using an interconnector, denoted
||. The behaviour arising from || is built up from transitions which may be represented by

relations — written as:

— C (Behpmc X BehQ) X (Behpmc X BehQ)

Let P € Behp,o., and let O € Behg. Then writing the relation — in infix notation

we have

PllO— PO

for some behaviour expressions P’ and O’.

If both processes participate during the transition, then we term this interaction.

A test between processes P and O is simply the composition P||O. A test run (or
experiment) is a sequence of transitions (possibly interactions) conducted in the composition

of the tester and the process. It is represented by:

We say that such a sequence is a computation if it is maximal, i.e. it is infinite or it
is finite with terminal element P, || O, (n > 0) which has the property, P, || O, — P’ || O’
for no pair P’,0’.

The set X of observationsis in terms of the transitions, which are typically labelled.

In equations 5.6 to 5.8 there was introduced the notion of an observation being
given a verdict 'pass’ or ’fail’ depending upon whether or not an observation relation was
satisfled. Here we use an ’experimental system’ to make explicit when such a relation
holds. We provide a mechanism for awarding verdicts according to whether tests have been

successful’ or 'unsuccessful’.

137

Let § C Q be a set, denoting ’successful” states (processes). We stipulate that the
computation is successful if Oy € S for some k > 0, i.e. if the tester passes through some
successful state. We do not specify what constitutes an unsuccessful computation, leaving

this open to definition in the respective contexts.

We are now able to define an Experimental System.
Definition Given an observation framework (Q, Y, |F), an Ezperimental System S is a
collection of the form < P,O,R,S >, where

i) P is an arbitrary set of processes

ii) O C Qis an arbitrary set of observers/testers

i) R = {2C(Px0O)x(Px0O)|ac L} is aset of binary interacting relations.
iv) § C O is the success set.

For such an £§, and P in P, and O in O, we let Comp(P,0) be the set of
computations whose initial element is P || O. Let succ denote a successful computation
and unsucc an unsuccessful computation. Let Result(P,0) C {succ, unsucc} be defined

by:

suce € Result(P,0) if Comp(P,O) contains a successful computation.

unsuce € Result(P,0) if Comp(P,0) contains an unsuccessful computation.

5.4.4.1 Testing relations

We are able to formalise notions of ‘may’ satisfy and ‘must’ satisfy a test through

defining 2 relations may and must:

P may O if suce € Result(P,0)
P must O if unsuce ¢ Result(P,0)

Now define corresponding observation relations <14y and <l s

PO ey SO P may O= 5 may O
PlFO dpust S |F O if P must O = S must O

We then define respective verdicts as:

pass iV <., 5 |F O,
vO,may(V) = (59)

fail otherwise

pass iV At S |F O,
vO,must(V) = (510)

fail otherwise

138

The corresponding implementation relations <,,4, and <, respectively are pre-

orders, and in 5.8, we have:

I € Implyqgy(9) < VO € Q:v0 may(l |F O) = pass (5.11)

I € Implyyst(S) <= YO € Q: v must(L |F O) = pass (5.12)

We can now define a testing-based pre-order which reflects the notions of robust

conformance described at the end of section 5.4.1.

o conformance: whenever, for a given tester, S has no unsuccessful computations, then

neither must 7.

o robustness: whenever, for a given tester, I has a successful computation, then so must

S.
These notions motivate the following definition of a robust conformance testing
preorder, denoted <iegppe:

Definition [<istrc 5 <= I € Implyay(S) NS € Impliyysi(1).

A second preorder relation (as defined in [Hen88]), which we call the testing pre-

order is as above, except for reversing the <, relation in the conjunction:

Definition [€ Implicgting(S) <= 1 € Impliay(S) N1 € Implyys:(S).

We may also define testing equivalence:

Definition Two processes are testing equivalent, written P ~ Q if P € Impliesting(Q) and

Q € Impltesting(P)

Similarly, we may define the equivalence relation corresponding to the ’testrc’

preorder, and see that it co-incides with testing equivalence.

The testing equivalence relation may be viewed as the formalisation of the system
design concept of a black box. Two systems are testing equivalent (equivalent black boxes)
if they cannot be distinguished by testing. Thus we may define two specifications 57 and

S to be testing equivalent if every may (must) test of S is also a may (must) test of S5.

In [Lan90] there is some related work which defines a more powerful set of observers

through the introduction of a slightly extended version of LOTOS (TLOTOS) designed to

139

have the special facility of deadlock detection; the paper also covers the relationship between
the reduction and failures pre-orders as described here, but for finite processes only and not

within the observation framework.

5.4.4.2 Instantiating the Experimental System with LTS Operational Seman-

tics

We now specialise £S by specifying that operational semantics be defined through
the use of LTS, using the definitions given for LOTOS in figure A.1 of Appendix A. Note
that 7 is a ’silent’ unobservable action, which we also call an internal action. We stipulate
that the empty string belongs to L*, and denote it by ¢ and that for any s € L*, we define
¥ = €. Given a € L, in any state P, whenever P & P’ for some P’, we have an observable

transition. A sequence < ag,dq, ..., 4, > of observable transitions is called a trace. For a

process P, the set of traces is denoted T'r(P).

We now instantiate in the Experimental System, and employ labels for the tran-

sitions. Hence, these are denoted as parameterised relations with signature:

i C (Behpmc X BehQ) X (Behpmc X BehQ)

As before let P € Behp,,., and let O € Behg. Then writing the relation L in

infix notation we have

PllOL PO
for some behaviour expressions P’ and O’ which satisfy the relevant transition rules.

A test run is now represented by a sequence of the form

Pol|Oo 2 PO 22 ... "2 P || O, 22 ... where p; € L.

The set ¥ of possible observations is the set of traces, ¥ = {< ag,ay,... >: Vi €
{0,1,...}.a; € L}.

5.5 Establishing Robust Conformance as a testing relation

We now approach testing from the conformance viewpoint; by appropriate choice
of definitions, we show that conformance-based notions are closely related to the testing
notions we examined above; this coverage follows that in e.g. [ABeT90], but provides

more detail, concentrating on the one relation. In our treatment, which is geared towards

140

refinement, we seek to show implementation relations and thus view pre-order relations as
appropriate. Hence, we concentrate on showing that we may solve through testing (in theory,
at least) the problem of determining for a given S whether or not some [satisifies I <p 9
for some implementation relation <gz. The main result of this section is that, subject to
minor restrictions, one such relation, called reduction (or failures preorder) co-incides with

a testing relation ’testrc’ defined within the Experimental System.

5.5.1 Preliminary Definitions and Results

First, we need to introduce a couple of definitions which describe the immediate
capability to perform actions in a given state.
Definition (Refusal function)

The refusal function of a process B, Rg : L — P(P(L))is defined for each o € L*
by:

Rp(o)={ACL|3B :B3 B :Yac A.B %)}
The set Rp(o) is called a refusal set.

Note that this differs slightly from the definition in [ABe®90] in that a second
colon is used (between last two terms) instead of a conjunction (A). This is to aid logical
clarity.

We may also define a function that is the complement of the refusals in P(L)

which we call the acceptance function. Note that this is different from the function defined

in [ABe™90]:

Definition (Acceptance function)

The acceptance function of a process B, Ag : L* — P(P(L)) is defined for each
o € L” by:

Ap(o) = P(L)\ Rp(a).
The set Ag(o) is called an acceptance set.

The following result is immediate consequence of the properties of sets:

Lemma 5.5.1 Suppose By, By € Behp,,. and that o € L*, then Rp,(0) C Rp,(0) <=
AB2(U) 2 AB1(U)'

141

Some simple manipulation gives an alternative expression of the Acceptance func-

tion:

Lemma 5.5.2 Let B € Behp,o. and o € L*. Then Ag(c) = {A C L | VB’ € Behpyoe :
B2 B :3xc AB =}

Proof We have Rg(c) = {R C L | 3B' € Behpyoe : B = B’ : Vo € R.B' £} and
Ap(c) = P(L)\ Rp(c). Therefore Ag(c) = {AC L |-(3B': B> B :Vz ¢ A.B' %#)}.
This implies Ag(c) = {A C L | VB’ € Behproe : B> B': =(Va € A.B' %)} if and only if
Ap(0)={AC L |VB € Behpoe : B2 B :32 € A.B' 3)}

The following simple Lemma shows that a given acceptance set can absorb any

other members of the label set.
Lemma 5.5.3 Let B € Behpyo. and o € L*. If A € Ag(o) thenVy € L.AU{y} € Ap(0o).

Proof From Lemma 5.5.2, clearly if A € Ag(o) then for any y € L we have: VB’ €
Behproe : (B2 B3z c AU{y}: B' Z. So AU {y} € Ap(0o) o.

We now define a relation reduction for robust conformance, providing another
formalisation, being a conjunction of each of the two notions CONF1 and CONF2 given
informally.

Definition (Reduction Relation)

I is a reduction of a specification, written <,.4, if

I <,0q5 < ITconf SATr(I)CTr(S5)

where conf is an implementation relation for conformance and is defined as:

I conf§ <= VoeTr(S): Ri(c)C Rs(o)

Note that another relation given in the literature is extension [BSS86], which is
defined as for reduction except that the relation on trace inclusion is reversed. Hence, the
equivalence relation for extension also co-incides with testing equivalence. The extension
relation, in the way it allows extra behaviour does not check for robustness, so we do not

use it here.

The following Lemma shows that the reduction relation may be characterised

entirely in terms of refusals:

142

Lemma 5.5.4 Let [,5 € Behproe. I <peq S <= Vo € L*: Rji(c) C Rs(0)

Proof First note that from the definition, we have: Yo € L*, P € Behp,,. if o € Tr(P)
then) € Rp(o) (since for all behaviour expressions B’ : Va €) : B' #); if o ¢ Tr(P) then
Rp(o)=10

(=)
(i) Tr(S) C L* so the conf relation holds.

(ii) Suppose T'r(I) € Tr(S5), so 3o € Tr(1) with o &€ Tr(5). Note o is not ¢ since
¢ € Tr(B) for all behaviour expressions B. Therefore Rg(o) = (, whilst {0} C R;(0),

whence Rg(o) C Ry(o) which is a contradiction.

(<) We have already that Yo € Tr(I) : Ry(c) C Rs(o). It remains only to show that the

containment of refusals holds also for traces not in the traces of I.

Suppose o ¢ Tr(I), then (as before), Rj(c) = (. As Rg(o) is some set, the

containment follows at once. O

From this we deduce immediately that the reduction relation is a preorder. The
conf relation is not, since it may not always satisfy the transitive property. Suppose
P1, P2, P3 are a sequence of processes with P3 conf P2 and P2 conf P1, then Vo €
Tr(P1)nTr(P2), we do have Rp3(c) C Rpi(0), but transitivity can fail for ¢ € Tr(P1) \
Tr(P2). As an example, let P1 = i;b;stop [] a;c;stop,P2 = b;stop,P3 = b;stop []
a;stop. Then we have P3 conf P2 and P2 conf P1 but =P3 conf P1 (as Rp,(< a >) =
P(L) but Rp,(< a >) C P(L) since, e.g., {c} ¢ Rp,).

5.5.2 Notes and Examples

Given this characterisation of the refusal function, we can observe more easily the
following properties that describe the reduction preorder.

Regarding processes in terms of their depiction as trees, a process I is an imple-
mentation in the sense of reduction with respect to 5 if it is essentially derived from §
by making certain kinds of choices at each node of the tree of 5. These choices are made
according to certain rules, that (up to some suitable notion of equivalence) either preserve
branches or drop them. I may be observed as having basically a substructure of S (possibly
with some extra duplication), built up in corresponding fashion node by node, starting from

the root. The rules are (informally):

o If a node N of 5 has only deterministic choices, then these must be preserved in [,

albeit the choice possibly prefixed by an internal action.

143

e If N has at least one non-deterministic choice, then the implementer has the option
of incorporating as a choice a path whose initial(s) action corresponds to that in
any one or more of those non-deterministic paths plus any number (zero or more)
of the remaining other (deterministic) branches. The subsequent behaviour of these

branches in I depend upon the behaviour of the corresponding path in 5.

e In either case, no new paths may be introduced that have initial action different from

those that may be performed (perhaps after internal actions) from N.

In summary, at each node the implementer has an option if and only if there is
some non-deterministic choice, in which case, at least one of the non-deterministic paths

must be incorporated in I.
We provide a few examples to illustrate the relation:

Example 1S = a;stop [l i;b;stop,I1 = b; stop,I2 =a;stop,I3 = a;stop [] b;stop,
I4 = a;stop [] b;stop [1 c;stop.

Then we have:

I1 <4 S,

12 £,cq S, since {b} € Rya(e), but {b} & Rs(e)

13 <,eq 5

I4 L,eq S, since Rpy(< ¢>)=P(L),but Rg(<ec>)=10

Example 2 S = a;stop [] b;stop, I=b;stop [] i; (a;stop [1 b;stop)
Then it may be seen that I <g 5.

This indicates that the reduction relation does not merely resolve choices that are
left open in the specification — an implementation that is a reduction of a specification can
exhibit more complex behaviour, though in general, this requires some duplication of initial

actions.

Example 3 Allowing implementations to arise through resolving choices that arise in du-
plication of actions inserted by the specifier seems sensible as it reflects the intention of
leaving it to the implementer to decide between such alternatives depending on external
factors such as performance, cost etc. This is certainly incorporated in the reduction rela-
tion; however, the reduction relation also allows as valid implementations, other processes,
which remove benign choices on a non-deterministic branch.

We provide several examples to illustrate these points (further discussion of the

drawbacks of the reduction relation are given in [Lan90]).

144

3.1: 3 = a;(b;stop [c;stop) [a;b;d;stop,I = a;b;stop [] a;b;d;stopim-
plies
I <,eq 5, but here we see that I has lopped off an action at a benign choice, contained

in a non-deterministic branch.

3.2: S = a;(b;stop [1 c;stop) [1 a;(b;d;stop [1 c;stop),
I = a;(b;stop [1 c;stop) [1 a;b;d;stopimplies that we do NOT have I <,.q4 5,

since the refusals of 5 after < @ > are smaller than that of /.

3.3: S= i;(a;stop [] b;stop) [] c;stop, and I = a;stop [] b;stop. Then 1
is a reduction of § - note that the initial choice involves non-determinism, and hence

the benign action ’c’ can be dropped in the implementation.

3.4: S = i;(a;stopl] b;stop)[]1 i;(c;stopl] d;stop)[] a;stopl] c;stop, I1
= a;stop[] b;stop, I2 = a;stop[] c;stop. Then I1 <, .4 5, but 12 £,.q4 5 (since
{b,d} ¢ Rs(e)). However, removing the 'b” action in the internalised branch that

offers ’a’ or ’b’, reverses these valuations!

5.5.3 Some Guidelines for use of conformance in refinement

Some guidelines are required for effective use of this interpretation of conformance,
to elaborate on the options open to the specifier/implementer in the process of moving a
process definition along the refinement trajectory. In particular, the specifier has to take
account of the rules in the previous section regarding the choice structures so that his/her

intentions are retained in the production of conforming refinements.

If the specifier foresees more than one path of continuation from a given state, all

of which are compulsory, then this may be implemented as a benign choice:

ay; P[] ag; Po (] o [] ans Py

Implementations I will conform only if I has a corresponding node with a choice

which includes each of these paths a;; P;.

However, if one requires a choice in which there is a mixture of compulsory and
optional choices, then all the compulsory choices should be grouped together and prefixed

by an internal action, whilst any options should be included as benign choices:

B(a Pl ag P][] ass P) [615 @Q1 [] 025 Q2 (] - [] 0ns @

145

Here, implementations I will conform only if I has a corresponding node with a

choice which includes each of these paths a;; P;, possibly with internal action prefixes.

More generally, suppose that the specifier wishes that an implementation possesses
at least one branch from several, some of which offer more than one choice. Then this is

specified through the use of an internal action prefix before each such branch as follows:

{ m

DB aii P [D bis Qk
J k=1

=1 =1

Here there are [non-deterministic branches, one of which must be preserved in the

implementation.

If the specifier wishes to specify that the implementation has some pre-emptive
power at a certain state (such as a "time out’ facility), then, as noted in the previous section,
under conf, if a node offers a choice between a mixture of benign and non-deterministic
options, then valid implementations can drop any or all of the benign choices and, further,
need only retain one of the non-deterministic branches. In this case, the specifier could
define an observable action such as ’timeout’ that does not belong to the synchronisation
set A, and which can later be hidden. However, once hidden, for the other (benign) branches
to remain, some other notion of conformance would have to be used for subsequent stages

in refinement.

Once it is decided for a node which paths to include, then some simplification
can take place through the removal of internal action prefixes, still leaving conforming
implementations. Once this has been done for all nodes, the implementer can seek to reify
with details of ’how’, and a new notion of refinement should be introduced, with the internal
action assuming its more usual conotation of hiding some behaviour rather than being a

mechanism for resolving choices.
Example

As an illustration, consider the design of a vending machine VM for maps of a
local UK area that will each cost 2 Pounds Sterling. In our design, we wish to allow the

machine to accept 50p and 1 Pound coins. Thus the initial state of a specification V M may

be:

VM = 50p; VM1 [] 1Pd;VM2, where VM1,V M2 € Behp,,.

However, suppose that the government announces that it is considering issuing a

146

new 2 Pound coin. In our specification we wish to allow for the possibility of accepting
these new coins depending upon what the government decides, but we don’t yet know the
outcome, though news of the decision will be available in due course. By the reasoning
above, we can’t simply tack on a branch that accepts a 2Pd choice, instead we need to

rewrite the initial definition of V.M to:

VM = i;(50p; VM1 [] 1Pd;VM2) [] 2Pd; VM3
and some comment is included to explain the choices, including the use of the
internal action.

When subsequently, the decision not to go ahead with the new coin is announced,
then a subsequent refinement is settled upon (dropping the internal action prefix in the

process):

VM = 50p; VM1 [] 1Pd;VM2.

and we can proceed to refine this model with detail.

Overall, the approach above seems workable, but care is needed in interpreting the
role of the internal action under conf. Whatever relations are used, it is wise to provide

comments to clarify the designers’ intentions.

5.5.4 Proof that reduction is a testing relation

We now show that reduction is testable simply by demonstrating that it coincides
with the ’testrc’ preorder. As a consequence, reduction may be shown by using ’'may’
and ’must’ tests. The following contributing result shows that for any parallel operator,
compositions between I and O that lead the tester to pass through a certain state may be

mirrored in the composition of 5 with O.

Lemma 5.5.5 Let [,5 € Behpyo. and suppose Ri(o) C Rgs(o) and that || denotes any
parallel operator. Let O € Q. Then I]|0 = I'||0" implies S||O = §'||0’, for some processes
O’ and 5.

Proof We do this by induction.

Suppose 0 =< ag, 41, ..., a4y >E L*.

Base Case

147

There are three cases depending upon the ability of I and O to perform the initial

action ag.
1. I]|O 2 I]|Oy, some state 01, i.e. ag is only performed by O. Then, we have either:

(a) ag € Ry(e), whence ag € Rs(¢), since Yo € L*.Rj(c) C Rs(o), and then S||O &
S110;.

or

(b) ao € Ry(¢), so O 2 Oy independently of I and hence of any process that offers
the action in parallel composition. Hence, §]|0 2 §]|0;.

2. 1|10 & 1|0, i.e. ag is only performed by I.

Then, since Tr(I) C Tr(S), we have < ag >€ Tr(S) and hence §||O & $,]|0, for

some process S7.

3. I1]]0 2 1,]|04, i.e. ag is performed by both I and O. Again, since Tr(I) C Tr(5), we
have < ag >€ Tr(S5), s0 S||0 2 51]|0;.

The base case is done.
Inductive Case

A very similar argument is applied. We assume that the result is true for o/ € L*
of length h, where h € N. Thus, by this hypothesis, we have that I]|O N I'||0', some
I', 0. and that 5|0 z I'|||O’ with T 2 1 and 0 Z' O', say

Now suppose that the composition of I’ and O’ can perform the action ap. As

above, there are three cases, and the arguments are analogous.
1. I'||0" 2% I'||0", some state 0, i.e. ay is only performed by O’. Then, we have either:

(a) ap, € Ri(c'), whence a, € Rg(o0'), since Yo € L*.Rj(c) C Rg(o), and then
Sj0" 2 570
or

(b) an & Ri(a'), so O' 2 0" independently of I’ and hence §'||0" 2 §||0".

2. I'||0" 2 I")|0', for some process I”, i.e. ay is only performed by I'.

Then, since Tr(I) C Tr(5), we have 0/ —~< a9 >€ Tr(S5) and hence there exist
processes S/, §" such that 5||0’ 2 §”||0’, for some process S”.

148

3. I')|O0" 2 I")|0", i.e. ay, is performed by both I' and O’. Again, since Tr(I) C Tr(S5),
we have 0/ ~< ag >€ Tr(S5), so there exist processes 5, 5" such that §’||0" &
S//||O//‘

Hence the statement is true for traces of length h 4+ 1. Thus, as the statement is
true for h = 1, it is true by induction for h = 2.3, ... and hence for traces of any length, so

the result follows. o

Proposition 5.5.6 For a specification S and implementation under test, I, suppose that
both I and every tester in § are strongly convergent (i.e. contain no infinite sequence of
internal actions) and that in the Experimental System we define || to be the parallel operator
in which synchronisation is on the set L of all observable actions; and a computation is

unsuccessful if it is not successful. Then,

1 Sred S =1 Stestrc S

Proof IFrom Lemma 5.5.4 it suffices to show that Vo € L*.Rj(0) C Rs(o) iff I <iegtre 5.

(=) We need to show:

1. VO € Q. I may O = S may O

2. YO € Q. S must O = I must O

1. Suppose for some O € Q. comp(I,0) = succ € Result(I,0). Then we have:

1110 3 I'||Og

for some ¢ € ¥, Oy € S and I' € Behpyoe, where I 2 I' and O B 0Oy, say. Since
Tr(l) CTr(S), we have o1 € Tr(S5). It follows immediately from Lemma 5.5.5 that S||O

has a trace in which O passes through Oy. o

2. We prove the contrapositive, i.e. that Result(l,0) # {succ} = Result(5,0) # {succ}.
There are two cases corresponding to the length of the sequence being finite and infinite.
Case (i): Suppose 1]|0 B Ih]|0¢ B L]|01 & ... 5" 1||O;, and L||0; — I']]0’ for no
pair I',0" and Vi € {0,1,...,1}.0; ¢ S. From Lemma 5.5.5, we have that any path in []|O
can be matched in §||O, i.e. there exist processes S, 51, ..., 5 such that S||O 2 So||0y =2
Sil|0r 2 < Si||O;. Let ogx = 09 —~< ag,ay,...,a; >. Then since Rj(oq;) C Rs(oak),
we have that there exists an S; such that §||O 2% §||0; with S||O; £ S'|| L’ for any pair
S L o

149

Case (ii): Suppose we have an infinite sequence I|0 22 Iy||0Og & L]|0y & ... If y; is

observable, then (again by Lemma 5.5.5), it can be matched by the behaviour of S||O, an
infinite sequence with Vj.0; ¢ S. Noting that I;||0; = I;41||O; may or may not be matched
by 5, we invoke the hypothesis in the proposition that an infinite sequence cannot contain
an infinite subsequence of internal actions, i.e. subsequences of internal actions must be
finite. Therefore, we may apply inductively the argument above. So there exist processes
So, 81, ... such that I]|0 2 I4||0¢ & L]|O; B ... (with observable actions ag,ay,...) is
matched by S[|O 2 S]|0¢ 2 51]|01 2 ..., where Vj.0; € S. o

(<) We prove I <;egpc S implies I <,.q S by proving the contrapositive. Suppose then
that 30 € L*.Rj(0) € Rs(o). Then we need to show =P V =() where:

e P is the statement VO € Q. I may O = 5 may O

o () is the statement VO € Q. 5 must O = I must O
i.e., show P’V Q" where:

o P’ is the statement 30 € Q. I may O A =(S may O)

e (' is the statement 30 € Q. S must O A —(I must O)

Suppose we have ¢ =< ag, ay,...,a; >.

Case (i) Rs(o) = 0.

We have Rg(o) = 0 <= o ¢ Tr(5). Since Ri(c) € Rs(o), we have that
Ri(o) # 0. Therefore 0 € Tr(I). Now define as (the only) successful testers O those which
just tack on a successful state after performing o. That is, those O such that O def ag; Og
and O; def a;i11;0i11; 0 < i < k—1, where Vi € {0,1,...,05-1}.0; € §,0; € S, where
“” denotes action prefix, (see figure A.2 for a definition). Then I||O = I'||Oy for some I'.

Hence I may O.

Let o be the longest initial subtrace of o such that og € T'r(.9). Then as || requires
synchronisation on all observable actions, S||O 2 §'||0 such that $'||0’ 2 for no a € L.
Thus O cannot in its interaction with 5 reach a successful state after performing og, so
(5 may O) 0.

Case (ii) Rs(o) # 0
Soo € Tr(S)NTr(l). In general, the behaviour of a process after ¢ is a tree. To

prove this case, we look at the behaviour that is possible after . We construct a tester O

as follows:

150

Following the notation above, let O def ag; Og and let O; def ;4130415 0 <7 <
k — 1, where Vi € {0,1,...,0:}.0; ¢ S.

Let a, be any action belonging to some A # 0 in Ag(o)\ Ar(o) (some such
action exists since Rj(c) ¢ Rs(o) and we have that ¢ is a trace of both). Now define
Oy, def a,; Ogy1 wWhere Ogqq € S. Then we have that since in our proposition hypothesis
neither S nor O contain no infinite sequences of internal actions and the synchronisation in

|| is on L, then S must O. However, again through the definition of ||, we have I||O & I'||0’
such that I’]|O" %, so =(I must O). We are done g.

Notes

1. To illustrate that the condition of strong convergence is necessary (for the first part),
consider the following processes (in LOTOS shorthand): S = a; (b;stop [1 c¢;stop),
I =a; I’ whereI’ = b;stop [1 c¢; stop [i;I’.Then it can beseen thatl <,.4
S but I Liesere S since, for example, if O = a; suce; stop with Oy = suce;stop € §
then S must O does not imply I must O owing to the possible infinite sequence of

the internal i after the initial action a.

2. It is not the case that Vo € L*.R;(0) C Rg(c) implies that after any o € Tr(1]|0)N
Tr(S9]|0), there is no transition which S can do in 5||O which I cannot do in I]|O,

for consider e.g:

S = a;30 [] a;S1, SO =b;stop, Si=c;S2,
I = a;b;stop
0 = a;01, 01=c;0k

Then VYo € L*.Ri(c) C Rs(o). But here S||O L 611107 with $1|]01 = S,||Ox,
whilst 1|0 % 1;]|0y, with I;]|0; &

The small examples used in this chapter may be examined by automated tools.
In particular, those illustrating the reduction relation may be checked in the Concurrency
Workbench [CPS89] which has the facility of testing the 'may” and 'must’ preorder testing
relations defined by Hennessy and De Nicola. (Hence the importance of establishing that

these preorders constitute an alternative characterisation of this relation).
The next stage is to actually construct (or derive) a suite of tests II, say, which

may be used to show whether or not the testing preorder holds. A further consideration is

the existence of a single tester, 7'(.9), derived from 5, called a canonical tester which has the

151

same testing power as II, which could save a lot of time and effort. In the next section we
show for a certain context the existence and construction of 7'(.9), which provides complete
test coverage, including a procedure which enables us to deduce the behaviour of 5 and I
with all possible testers. In general, it may not be possible to do this where the testers are

infinite.

5.6 A Canonical Tester for robust conformance in LOTOS

5.6.1 Introduction

In this section, we look at robust conformance testing for finite Basic LOTOS spec-
ifications. LOTOS allows a semantic interpretation in terms of labelled transition systems,
so we may usefully apply the theory of the Observation Framework and the Experimental
System, with all its results. The theory of test derivation as a whole has been the subject
of much research, but most of the attention has been focused on conformance only. We
are motivated by certain requirements that are important for safety-critical applications
such as the Flexport protocol for medical devices. In such areas there is the need to insure
against unexpected behaviour, i.e. rtobustness. Thus our approach is to show primarily
how canonical testers can be built to provide (in certain circumstances) completeness in
validation and, where possible, how detailed information may be obtained. Where overall
completeness cannot be realised, smaller contexts may be chosen: for instance, a process

may be checked for robustness after executing a given trace.

The work in this section consists of developing a canonical tester which is able to
determine whether or not an implementation under test I is a reduction of a specification
S. The approach constructs (or derives) a test process, guided by criteria similar to those
mentioned in section 5.3.1, and which proceeds iteratively to examine the refusals at each
state reachable by 5. In order to use faithfully the 'may’ and ’must’ testing strategy on
which is based the definition of the relation testre, successful and unsuccessful computations
are defined, and the tester designed accordingly.

There are already described in [Bri®7, BALT89], procedures (due to Brinksma)
for deriving a canonical tester for the reduction preorder, where it is split into two parts,
which test separately for trace inclusion and the conf relation respectively. The tester for
the conf relation is constructed following the observation first expressed by Brookes, Hoare
and Roscoe in [BHR84] that processes can be characterised in terms of traces and refusals
that satisfy certain properties. Hence, Brinksma’s tester makes use of failure trees in the

construction.

152

However, this is not the most efficient in the sense that some of its behaviour may
be removed and it would still suffice as a tester, though not ’canonical’ according to the
definition given by Brinksma, whose particular notion of canonical imposes the condition
that the traces of the tester for 5 must equal the traces of 5. Such a constraint gives rise
to some pleasant properties: any such tester must be unique up to testing equivalence, i.e.,
if T'1 and T2 are such canonical testers for conf, then 7'l ~ 72, and further, T'(7(5)) ~ 5,
i.e the tester for the tester for 5 gives rise to .5, modulo testing equivalence.

Relaxing the constraint on traces enables greater efficiency and larger classes of
valid testers. Indeed, in [Led91], Leduc has derived another canonical tester for the conf
relation that may be seen to start off with the tester tree derived as in [Bri87, BAL'89]
and then prunes it so that it becomes minimal in the sense that removing any traces from
it would nullify the completeness property that is necessary for it to be a valid tester.
A corresponding uniqueness property is expressed in terms of a new equivalence relation
con f-eq.

The canonical tester developed here has a similar approach in that refusals are
computed for the derivation. However, our presentation is more succinct in that we write
down directly an algorithm for the construction of 7'(.9') which does not require any partic-
ular characterisation of 5.

We also term our tester the unified tester since it is simultaneously meant as a
tester for both the conf and trace preorder relations. It is a simple composition of two
testers into one, thereby still allowing us to know in the case of failure whether there is lack
of conformance or trace inclusion. Brinksma’s canonical tester can be extended to test for
<yeq in such a manner by simply adding in some extra branches that test for traces that
extend beyond those belonging to S — discussed a little below.

Finally, in view of the wide-ranging checks that have to be carried out for robust-
ness, here efficiency is more of an issue than uniqueness. Thus, we follow the approach of

Leduc so that our tester for <,.4 shares the same minimality property on traces.

5.6.2 Outline of Methodology

We sketch here the main steps involved in justifying the existence of a canonical
tester, through the describing its construction. As an aide-mémoire, refer to Figure A.1 for
the LTS notation for LOTOS and Figure A.2 for some axioms and transition rules which
specify how a LOTOS behaviour expression may be unfolded action by action. Labelled
Transition Systems for LOTOS are discussed in more detail in [BB89]. Note that given

153

certain assumptions (namely that guards and predicates may be resolved), we can extend
the theory for Basic LOTOS to Full LOTOS expressions, where the LTS for LOTOS may
be expressed as a 4-tuple as given in the definition of section 2.5.1, such that actions p
are implicitly gates parameterised with values. We note especially that synchronisation
in parallel composition requires agreement on gates plus values. Indeed, by making these
assumptions we are able to apply conformance testing to our Flexport case study.

Testing for the reduction preorder may be seen as a special instance of property
testing as given in [CG93], where IUT is tested with respect to a property according to
a scenario which makes available a certain selection of events for each transition through
constraining the set of events; in our case we stipulate that the specification, implementation
and tester all have a finite label set and that the scenario consists of all of these except for
the flags. The construction of the unified tester T'(.9) for a given specification 5, has at its

heart a directed graph structure (more general than a tree).

The methodology consists of the following steps. First there are preliminary defi-
nitions — of what it means for a canonical test to be ’satisfied’; and the scope of our tester.
In order to make things computationally feasible, we focus on finite systems: to avoid non-
terminating test expansions, we stipulate finite data sorts and bounded event traces. Thus
we use a subset of Basic LOTOS for the behaviour expressions Behp,,., with the set Behg
of testers T to be Behp,,. together with a set F of flags.

Next, the construction is given — a single LOTOS behaviour expression 7'(.5), the
canonical tester, is built according to an algorithm. This is defined recursively in terms of
S’s behaviour after a trace o, starting from its root node and proceeding down its branches:

at each node in 7'(.9), the behaviour is given by I'(¢), where:

e we create non-deterministic choices corresponding to each of the reduced acceptance
sets. (In fact for each of these we use a kind of minimal subset called a reduced

acceptance set, defined later.)

e we create a deterministic choice for every action that is not possible for S after o.

Such branches lead to a failed computation.

e to correspond to a state of deadlock in the original specification we create a non-

deterministic choice that leads to flag ’success’.

Finally, we provide a number of results that should lead to a formal proof that the

algorithm really does generate a canonical tester for the reduction preorder.

154

The tester may be seen as being constructed in two parts since in § after a given
trace, o, the behaviour may be characterized by the acceptance sets (which leads to testing
for the conf relation), and the set of actions not possible (which leads to testing for the

trace preorder).
Conformance

Consider a specification S and its possible behaviours after a trace o. Let Ny, ..., N,
be the set of T—stable nodes reachable after o. In Lemma 5.6.3 it is shown that the
behaviour at these nodes completely determines Rg(0), generating a set R of refusals where
VR, € R : R;, C L. From the definition, we have that the acceptance set consists of
component sets which we denote by {A; : j = 1,...,m}, some m € N. These have the
property that Vj € {1,...,m},v5" : 9 % 5" 3ac A;: 5" % or A; =0, i.e. after S performs
a trace o, in each acceptance set there is at least one action by which ¢ can be extended.

Thus the tester T for conformance may be constructed by generating a tree that
mirrors in each of its nodes the acceptance sets reachable after any trace ¢ in 5. Then [
may be tested for whether or not it is able to synchronise after ¢ on at least one of the
actions a offered by the acceptance set. This test may be forced by offering a choice at
the corresponding node Np in T that consists precisely of a choice of m non-deterministic
branches, one for each acceptance set A;, with each branch prefixed by an internal event
before offering every action in A4;.

If there is an unsuccessful computation completed after the empty action at N,
then, as mentioned above, all actions of some acceptance set are refused, i.e. 35 € {1,...,m},
A; € Ry(o), whence Rj(c) € Rs(o) and we do not have conformance. Conversely, if

dj e {l,....,m},A; € Ri(o) then it follows that that there will be deadlock.

The above accounts for compulsory choices — those paths that must be preserved.
We need also to consider those actions that are optional’/’benign’: if one of these is imple-
mented in I, then the subsequent behaviour of this branch must conform. This is achieved
simply by offering deterministic branches at the respective node Ny of T for each action

that is possible after some trace ¢ in 5, but which is not a member of any acceptance set.

Finally as regards conformance, if 5 has a termination after o, then the correspond-
ing acceptance set is empty. The tester captures this by creating a branch that executes a

flag action (not in the label set A) to indicate success before termination.

Note that if A; and A, are sets such that A; C Ay, then Va € Ay : T||4; £ =
VYa € Ay : T||Ay £, whence we deduce that in the above test for conformance, it suffices

to select the smallest sets with respect to containment of (acceptance) sets. This is in

1585

encapsulated in the definition of reduced acceptance sets given below.
Robustness

For robustness, we need to ensure that there is trace inclusion. Similar, to the
above, we allow at a given node N7 to offer extra deterministic choices: for each action that
would lead to a trace not in 5, a branch is created consisting simply of that action followed
by a flag to indicate failure, followed by the stop action. Hence there will be at least one

fail” indication if I has such an extra branch.

These tests may be applied for traces of any length by the appropriate use of
recursion. For instance, the traces that belong to S may be given recursively, starting with
e, the empty trace and considering in turn traces that are incremented by single actions.
As ¢ belongs to all processes, we can then define for any trace o € T'r(5), the following

recursive procedure Proc(o) to test for trace inclusion, starting with e:

Proc(o) Suppose 0 € L*. Then, for an action a, either 0 ~< a >€ Tr(5) in which
case we reiterate and perform Proc(c ~< a >) or 0 ~< a >¢ Tr(5), whence we

deduce that all traces that contain ¢ ~< a > as a prefix are not in 7'7(5).

This approach for testing trace inclusion has already been expressed in [BALT89],
which is constructed via another line of reasoning that starts by considering «all traces in
the test suite and successively reducing to the same set as above. Although not stated, this
tester for trace inclusion can be integrated within the canonical tester detailed in [Bri87]
in a manner similar to that described here. The construction of the canonical tester for
conf can be extended to test for <,.q4 by replacing the standard invertable function that is
defined on failure tree projections 7' of processes (definition 2.5) by an extension of it that
simply adds a summation offering choices of the form a;; fail; stop for all a; that are not

possible transitions for 7.
5.6.3 Derivation of Unified tester

In this section we give the formal derivation of the unified tester for the reduction
preorder.

5.6.3.1 Preliminaries

We start by defining what we mean by ’canonical’ below for processes in general.
This definition is simply characterised as a special case of a test suite and is more general

than that in, e.g., [Bri87] which also stipulates a condition on traces.

156

Definition (Canonical Tester)
Given a specification S and an implementation relation <pg, a test suite {< T, vy >
Yren for Implrr(S) is a canonical tester if 11 = {T'} for some T" € Q (i.e., it contains just

one element). Where this is the case, we write 7'(.9) for the canonical tester.

Hence where such a T'(.9) exists, determining whether an IUT is an implementation

of a specification .5 may be decided simply by establishing whether or not a test is satisfied:

Definition (canonical test satisfaction)

Let S be a specification, from which a canonical tester 7'(.5') has been derived
for an implementation relation <p. Then we say that an implementation under test IUT
satisfies the test for <p with respect to T(S) iff v(JUT||T(S5)) = pass, in which case we
write JTUT sat T(5).

In order to construct a canonical tester for <,.4 to make use of the testing theory
above, we need to supply some definitions to make up the verdict function, making explicit
what we mean by successful and unsuccessful computations, and the observation relation

corresponding to <,.q4.

Notation

Let F = FoyeeUFdiag € L, where F is a set of flags, with Fsye. being indications
of success and Fy;q, being diagnostics labels for failures. We choose to keep these actions
reserved for the testers, so we define A = L \ F and stipulate: VP € Behp,,. : Act(P) C
AU{7}, whilst VI € Behq : Act(T) C L. Finally, let || denote the LOTOS parallel operator

where synchronisation must occur on all actions in A.

Definition The set of computations restricted by a label set A, denoted Comp(I,T) 4 is the
set of computations between I and T whose transitions have been constrained by synchro-

nisation on the set of transitions given in A.

Where A is understood, we choose to drop the suffix. Full LOTOS allows finer

granularity in restricting the set of values permissible at gates.

Definition (successful and unsuccessful computations)

Let @ € Comp(I,T)4 be a computation represented by:

IWWr—=n|\mT—-...—=0L,||T,—...

x is a successful computation if 36 € Fyyee, kb € N 2 Ii|| Ty Ly

157

x is an unsuccessful computation if it is not successful.

For the sake of simplicity, we define here Fyee = {success}, Fyiag = { fail}.

Recall that we have: I € Impl,cq(S5) if and only if »(I||T(S)) = pass if and only if
I||T(S) <yeq S||T(S). We now define:

I|T(S)<drea S||T(S) <= (L mayT(S)= S mayT(5)) A (S must T(S)=1mustT(S5)).

where, for any processes P € Behpyoc,

P may T if Comp(P,T)a contains a successful computation;

P must T if Comp(P,T)4 does not contain an unsuccessful computation.

By construction, we will claim that .S must T'(.9) is always true and that the may

observation relation always holds. Hence:

Definition (canonical test satisfaction for <,.q)
I sat T(S) for <,¢q if and only if I must T(.5).
In words, this means that I is a reduction of S if and only if composing canonical

tester T'(.9) of S with I yields no unsuccessful computations.

Definition (Reduced acceptance sets)
Let B € Behp,o. and o € L*. Then a reduced acceptance set for B, denoted AB(O')

is one that satisfies:
1. Ag(o) C Ag(0)
2. VA € Ap(o):3A" € Ap(o): A’ C A.
3. VA1, Ay € Ap(0o): AL ¢ As.
This definition is similar in style to that in [ABe%90], except for the addition of

the last condition which ensures the following property:

Lemma 5.6.1 The reduced acceptance set is unique.

Proof Suppose A; and A are both distinct reduced acceptance sets for process B and trace
o. Therefore WLOG 3A € Ay such that A ¢ As. From condition 1), A€ A= A€ Ap(o).
From condition 2) it follows that 3A’ € Ay : A’ C A. Since from the hypothesis, A’ # A,
this implies A’ C A. Now from conditions 1) and 2) we require 3A” € 4; : A” C A’. From

158

the transitive property of set inclusion this implies A” C A which contradicts condition 3)

O

Lemma 5.6.2 Let P,() € Behp,.. Let 0 € L*. Then Ap(c) C Ag(o) <— /ip(a) C
Aglo)

Proof

(=) Let A € Ap(c). Then by condition 1) A € Ap(o) and hence by the hypothesis
A € Ag(o). Suppose A ¢ Ag(o). Since A € Ag(a) we have from condition 2) that
JA’ € Ag(o) such that A’ C A (and also with A’ € Ag(o) — from condition 1). Therefore
from our supposition it follows that A’ C A. By condition 3), A’ & Ap(c). Two cases arise:

1. A" € Ap(o). This implies in condition 2) that JA” € Ap(o) such that A” C A’ C A

which contradicts condition 3).

2. A" ¢ Ap(o). This implies Ap(o) € Ag(o) which contradicts the hypothesis of the

Lemma.

In either case we reach a contradiction, and so the left implication holds o

(<) Let A € Ap(c). There are two cases:

1. A € Ap(o). Therefore by the Lemma hypothesis, we have A € AQ(O‘) and then by

set inclusion in the definition of reduced acceptance sets A € Ag(o).

2. A¢ Ap(c). Therefore JA’ € Ap(c): A’ C A. By the Lemma hypothesis, A’ € Ag(o),
hence (by set inclusion) A" € Ag(c). Finally we apply Lemma 5.5.3 inductively on

each element that is in A \ A’ to give the required result g

The following Lemma allows a simplification in the structure of the summations
that make up the definition of the algorithm, stating that at any given node it is the

tau-stable nodes that govern the refusal sets.

Lemma 5.6.3 Let S be a state belonging to a process P which has no infinite internal loops.

Let Ny, Ny, ...,N,, be the set of T-stable nodes reachable from S after . Then Rg(o) =
U?:l RNl((f)

Proof A state is either 7-stable or not, so we need only show that after o, any refusals in

states that offer 7 are also refusals of some 7-stable node that is reached after o.

159

If 3N, such that § = N, where N, — then there exists a 7T-stable N, such
k
that N, & N, for some k£ € N since we have the assumption that there are no infinite
internal loops. Then we have: Ya € Ry, (c).a € Ry, (¢) since otherwise N, = which is a

contradiction. This is true for all such NV, and the result followsn.

5.6.3.2 Construction, Properties and Examples

The algorithm

T(S) is derived from S by defining T'(.5) to be I'(¢) where Vo € L*:

I'(o) ::Z b; fail;stop] Z (e ~<e>)]
b%outo—(S) ceoouto-(s):
FA€Ag(o):iceA

Z i; Z a;l'(c ~<a>)] [I[F As(6)=0 THEN success;stop]
AGAOS(U) 2264
(AZ£D
(5.13)
where for a behaviour expression B and trace o, out,(B) := out(B') where

oeTr(B).

UB%B'

In summary, the first summation term handles traces that lie outside those of
S, the second summation handles ’benign’ branches whose initial action does not match
any initial action in a ’compulsory’ branch, the third specifies branches corresponding to
non-deterministic choices in 5, whilst the last one specifies a successful termination corre-

sponding to the case that S enters a terminal state.
The first Lemma for the algorithm simply states that whenever we have a trace of
S, then the I' function of this trace offers all actions:

Lemma 5.6.4 Let S € Behp,,.. Then Vo € Tr(S5).out(I'(c))= L.

Proof We have that for any z € L, either « € out,(5) or z ¢ out, (). The first summand
of the algorithm offers all actions of the latter case. Noting that € A : A € Ag(o) =
x € out,(S) by definition of the acceptance set, it also follows that the second and third

summations together offer all actions for the former casep

The second Lemma shows that any trace of 5 is also a trace of the tester.

Lemma 5.6.5 Let o € Tr(S). Then T(S) = (o).

160

Proof by induction on len(o)

base case: len(c) =0

o = ¢. Therefore T(5) = I'(¢). Clearly T'(¢) = T'(¢) o

Inductive case

Suppose that the result is true for o € L* : len(o) < k, k € N. Let ¢/ € L* :
len(o’) = k + 1. Therefore ¢/ = 0, ~< & > for some o, € L* : len(o;) = k and where
@ € L. By the induction hypothesis, T(5) 2 T(oy). Since o —~< z >€ Tr(S), then
x € out,, (). Therefore Rs(oy) # P(L) so As(a) # 0. And hence T'(oy,) can only perform
the action via one of the second or third summand since these partition out,(.9). In either

case we have T(a;) = (o), ~< & >) and the result followsg.
Thus the result is true for traces of length 0,1,2, ... by induction and we are done.
O

An immediate corollary from the above two Lemmas is that if o € T'r(.5) then out,(7(5)) =
L.

The next Lemma shows that whenever the test composition performs a trace of
certain length, then it will reach a state in which the Gamma function of the trace is within

an internal transition of this state.

Lemma 5.6.6 Let S,1 € Behp,.,.. Suppose o € Tr(I||T(95)) and out,(1(S5)) € Fiiag-
Then ¥I' € Behp,oe,VT' € Behg (I||T(S) 2 I'||T" implies T'(0) = T').

Proof The proof is by induction on len(o).

Base case: len(o) =0
We have 0 = ¢. So I||T(S) = I'||T’ which implies T(5) ™ T for some k € N and
hence I'(e) = T'

Inductive case

Suppose that the result is true for o € L* : len(o) < k, k € N. Let ¢/ € L* :
len(o’) = k + 1. Therefore ¢/ = 0, ~< & > for some o, € L* : len(o;) = k and where
v € L.

Suppose I||T(5) % I'||T’. Then looking at intermediate states, we have I||T(5) Z
I1.|| Ty for some Iy, Ty such that I;||Ty e I'||T'. Thus Ty e T’, through the definition
of ||, and by the induction hypothesis we have: I'(o;) = T). Hence I'(0y) 5 T7. Now

instantiating in the definition of the algorithm gives,

161

[(o}) = Z b; fail;stop] Z (e ~<e>)]
b%outck (S) ceoouto—k(s):
FA€cAg(oy):iceA

Z i; Z a; (o ~<a>)] [IF As(op)=0 THEN success;stop]

¢ a€l:
Aedg(og): acA
A2

Suppose the tester performs an action from the first summand. Then after o the

tester can perform a ’fail” action which contradicts the Lemma hypothessis.

We are left with either:

o [(o) E I(op ~< 2 >)

or
o (o) & I’ such that I'(op ~< 2 >) = I".

Hence we deduce that I'(o, ~< 2 >) = T’ as required o

Thus the result is true for traces of length 0,1,2, ... by induction and we are done

These Lemmas should be sufficient to show the main conjecture, i.e. that if §
is a specification with finite behaviour and 7'(.9) constructed as above, then T(5) is a
canonical tester for the reduction preorder. Further, the construction should enable the

simple deduction of the following:
1. (Decomposition property)

o [satisfies trace inclusion iff 7'(.S') does not record a ’fail’ in the test composition;

e [satisfies the conf relation iff all terminations in the test composition record

either 'fail’ or 'success’.

2. (Minimality property with respect to traces)

Let S € Behp,o., with canonical tester T'(.S) (for reduction preorder). Let T’ be an-
other canonical tester. Then Tr*(T") D Tr*(T(S5)), where VB € Behp,o., TT*(B) :=
{oeTr(B):0e{L\F}*}.

162

Examples

Example 1 8 = i;a;stop [1 b;stop. L = {a,b,c}.
Then Ry(2) = {{b, c}, {b},{c},0}
Therefore, Ag(e) ={{a,b,c},{a,b},{a,c},{a}}
Hence As(e) = {{a}}.
Rs(< a>)=Rs()="P(L). Hence As(< a>)= As()=10
... hence ...
T(S) = i;a;TL [1 b;TL [1 c;fail;stop
where

TL = succ;stop [] a;fail;stop [] b;fail;stop [1 c;fail;stop

Example 2 S = i;a;stop [1 i;(c;stop [d;stop) [a;stop [1 c;stop.

L =Aab,ec,d}.

Then Rs(e) = {{bc,d}, (b}, {b d}, {e,d}, 16}, e}, 1}, 0, {a, b}, {a})

Therefore, As(e) ={{a,b,c,d},{a,b,c},{a,b,d}, {a,c,d},{a,c}, {a,d}}

Hence As(e) = {{a,c}, {a,d}}.

Rs(< a >) = Rs(< ¢ >) = Rs(< d >) =P(L). Hence As(< a >) = As(< ¢ >
Y= As(<d>)=10

... hence ...

T(S) = i;(a; Tm [1 ¢;Tm) [1 i;(a;Tm [1 4;Tm) [] b;fail;stop

where

Tm = succ;stop [] a;fail;stop [] b;fail;stop [1 c;fail;stop [1 d;fail;stop

Example 38 = i;(a;stopl] b;stop)[] i;(c;stopl] d;stop)[] a;stopl] c;stop. L =
{a,b,c,d}.

Then Rs(e) = {{e,d}, {e}, {a}.0, {a,b}. {a}, {b}}

= As(e) = {{a,b,c,d},{a,b,c},{a,b,d}, {a,c,d}, {b,c,d}, {a,c},{a,d},{b,c}, {b,d}}

Hence As(e) = {{a,c}, {a,d},{b,c},{b,d}}.

Vo € L.Rs(< >) = P(L). Hence Vo € L.As(< z >) =0}

... hence ...

T(S) = i;(a; Tm [J] ¢;Tm) [i;(a;Tm [1 d;Tm) [1;(b;Tm [J ¢;Tm) [1 i;(b;Tm
(1 d;Tm)

where, as above,

Tm = succ;stop [] a;fail;stop [] b;fail;stop [1 c;fail;stop [1 d;fail;stop

Example 4 To illustrate computations of 7(.9) and I terminating with/without raising flags,

consider: S = a;b; stop, Il = a; stop, I2 = a; c; stop with A = {a,b,c}. Then

163

T(S) = i; a;(i;b;TL [1 a;fail;stop [] c;fail;stop) [I b;fail;stop []
c;fail;stop
where

TL = succ;stop [] a;fail;stop [] b;fail;stop [1 c;fail;stop

In this case, T(9)||I1 = a;stop and T'(5)||/2 = a; fail; stop — the former fails to
conform, whilst the latter fails trace inclusion.
5.6.4 A Special Case

Where the refusals of S can be expressed simply, then this may lead to simplifica-

tion in the tester expression, as is the case resulting from the following Lemma.

Lemma 5.6.7 Let S € Behp,o. and let ¢ € L*, where I is some non-empty index set.
Suppose Rs(0) = U;er P(L\ a;). Then, we have:
1. As(o) = {Uierfai}}-

2. {outs(o)} = As(o)

Proof Let X = {J;cr{ai}.

1. We show first that X € Ag(o):

Suppose X € Rg(o). Then since Rs(0) = U;er P(L\ a;), we have that Ja; € X : X €
P(L\ a;). This gives an immediate contradiction (since a; € X but a; € P(L \ a;)).
Therefore X ¢ Rs(o). However X € P(L),s0 X € Ag(0).

We now show that VA € Ag(o) : A O X. Suppose this is not the case, so 34 €
Ag(o),z € X : 2 ¢ A. But then we have A € P(L \ z). Hence A € Rg(o) —

contradiction.

Now let Z = {X}. Then it can be seen that this is in fact As(c) since it satisfies all

three of the requirements in the definition of reduced acceptance sets.g

2. From the first part we need only show that outs(o) = U;cr{ai}-

Suppose that a € outs(c) AN a ¢ X. Then we have Va; : ¢ € Z : {a} € P(L\).
Then since Rs(0) = U;er P(L \ a;)any set in P(L) containing 'a’ must be a refusal
set in which case a ¢ out,(S5), which is a contradiction. Therefore out,(5) C X.
Hence it follows that Va2 € X : 2 € out,(.9) since otherwise L{z} € Rg(o) which is a

contradiction o

164

These Lemmas lead to considerable simplification in the expression for the canon-

ical tester (equation 5.13) for this particular case:

I'(o) = Z b; fail;stop] Z (o ~<e>) [i Z a;0(oc ~< a >)
be(L\outs(S)) c€(outs(S)\X) aeX
(5.14)

where X = {J;cr{a;}

We now need to know structures which make use of the simplification. One such

is as follows.

Suppose that YN : § & N : N = Ziejrk;ai;N’ for some k € N, N' € Behp,oe,
where §) # 7 C Z. Then we do indeed have Rs(0) = ;cr P(L\ @;). In the following section
we use this particular case to help in the actual construction of simpler testers reflecting

the simple tester expression 5.14.

5.7 Implementation in a subset of Full LOTOS

We provide an implementation of the algorithm in a restricted subset of Full LO-
TOS, in which actions are parameterised with finite data sets and where predicates are
resolved. This allows for a simple injection between behaviour expressions given as LTSs
and the corresponding LOTOS specification, preserving the tree structure and the relation-
ships between nodes. The algorithm for this subset of Full LOTOS may then be expressed

as follows.

The algorithm in Full LOTOS subset

T(S) is derived from S by defining T'(.5) to be I'(¢) where Vo € L*:

nq mi
I'(o):= Z Z gi'vi ks fail;stop]
=1 k=1

g:lvi pEouts(S)

mo
> > gilvig; Do ~< gilvigp >)]
k

=1 =1:
gi'vi g €outs (S):a(gilv i)

n3 ms3
ok, gilvi g, Do ~< gilogp >)]

° =1 k=1
A€Ag(a) gilv; p€outs (S):{g:tvi JEA

165

[IF As(c)=0 THEN success;stop] — —(*)

where for z € L*, a(z) is the statement 3A € Ag(0): {2} € A.

The algorithm is implemented directly following the shape of the algorithm, using
iteratively process instantiation. An enhancement is made to the test for trace inclusion,
whereby diagnosis on failure is given according to whether or not there is synchronisation

on gates or values; the fail” action is effectively parameterised to reflect this.

5.7.1 Main procedure

1. First the algorithm must be expressed to account for parameterised actions in the
form corresponding to (%), so all predicates and guards must be resolved and the

specification flattened. One may use a tool such as SMILE [EW93] to do this.

2. The data types of S are combined into one super data type, whose sort we give below
as Data. This data type requires the sorts for the Natural Numbers, the Booleans
and Set. We have used the pre-defined types given in an updated version of the ISO
library. Equations are then defined fully for the operations lt, eq, and ne.

3. The tester itself may then be constructed as a LOTOS specification whose body is

given by a single process Tester which consists of a structure corresponding to that
in (*).
Now we define the tester as:
specification CanonicalTesterReduction [< all gates >, fail data, fail_gate,
fail both, success] : noexit
behaviour Tester[< all gates >,fail_data,fail gate,fail both,success](<>)
where

process Tester [< all gates >, fail _data, fail gate, fail both, success]

(o:string): noexit: =

nq mi
Z Z ([Fz : gi'z € out,(5)] — fail_data;stop]
=1 k=1

gilv; pEouts (S)

[3h : hlv; i € outy(5)] — fail_gate;stop |]

166

[Ah : hlv; g € out,(S)AND Az : glz € out,(5)] — fail_both;stop) []

no mo
Z Z gi'v; p; Tester[< all gates >, fail_data, fail _gate, fail_both, success]
=1 kE=1:

gilvg p€outs(S)ima(gilug i)

(o+ < gilvip>)]

n3 ms3
Z i Z Z g:'v; 1y Tester[< all gates >, fail_data, fail _gate, fail both, success]
1 k

° = =1
Azejié)"bﬂvi,k Eouts(S)H{gilvik yEA

(o+ < gilvip>)]

[As(0) = 0] — success; stop]

endproc (* Tester *)

endspec (* CanonicalTesterReduction *)

Notes

1. Within the body of the process Tester, there are recursive calls to Tester. It may
be possible to encode the behaviour of § within the data types and take this as
a process instantiation. Otherwise, when the behaviour of § is entered manually,
this ’call’” should be substitued by the body of the Tester process. Likewise for the

preconditions.

2. For the diagnosis, there will be some superfluous flags: if there is a ’fail-both’ indica-

tion, then there will also be a fail-data’ or ’fail-gate’ indication.

5.7.2 Special Case

We can make use of the special case expressed in section 5.6.4. This further
simplification allows a straightforward application to the Flexport case study: in the next
chapter it is described how the tester is actually derived from a specification based on a

Message Sequence Chart.

167

We assume that the LTS for a specification 5 has a tree structure as given by:

=20 gy St [l > i stop, (5.15)

i=1 k=1 jeJ
In this case, we implement the algorithm by an injection between behaviour ex-
pressions and the corresponding LOTOS specification, preserving the tree structure and the
relationships between nodes. To implement the algorithm neatly, we use iteratively process
instantiation of a process TestEvent within a newly defined process tester, which itself is

not recursive. The TestEvent process gives diagnosis on failure of trace inclusion.

For the case that for all nodes N either m; = 1 and p; = 0 or p; > 0, we may

express the tester process as

process Tester [< gates >, < failure gates >, success] : noexit : =

< q(N)> (TestEventlg;,< failure gates >,fail data,fail _gate,fail both,

success]

(v(1,1), Insert(v(iy), Insert v gy, ... Insert 1(vy,,),{}) ..))
>>

< q(Nq1, > TestEvent[... 1 (...)
>> . . . >> success; stop
)
[]
TestEvent[gs,< faitlure gates >,fail_data,fail gate,fail both,success]
(v(2,1), Insert(v(zy), Insert v(g), ... Insert 1(vg,.,),{}) ..))
>> . . . >> success; stop
[]
[]
TestEventl[g,,< failure gates >,fail _data,fail gate,fail both, success]
(V(n1y> Insert(vg,qy, Insert v, gy, ... Insert1(vim,) »{}) ..)
>> . . . >> success; stop

)

endproc (* Tester *)

where for a node N, ¢(N,) is a kind of rewrite operation: replace this by an empty

168

string if #out(N,) = 1 or else by internal action prefix ;" if #out(N,) > 1. If out(N,) =0
then write ’success;stop’.

Note: Insert, an operation of the set data type, adds an element to a set.

5.7.2.1 LOTOS ’procedure’ TestEvent

We define the process TestEvent which 'receives’ as gate labels a correct gate g
plus other (incorrect) gates f1, f2,... and as a value parameter the correct data z. This
process offers for any value zz:Data, all actions possible of form gg¢!zz, where gg is any of the
supplied gates. If the correct action (gate and data) is specified then the process successfully
terminates via exit. Otherwise, depending on TUT, there will either be immediate deadlock
arising when IUT lacks a branch, or undesirable synchronisation on some other action of
TUT, not equal to g!z. After such an action one of three flags are raised, immediately before

(unsuccessful) termination:

1. fail data — gate was matched, but the data was not matched;
2. fail_gate — data was matched, but the gate was not matched;

3. fail both — neither the data nor the gate were matched.

By choosing to supply to TestEvent all gates and by encapsulating all possible
data values in the sort data, this process offers all actions possible. When the test process

is specified in this way, it becomes a test of robustness.

Special care is required to ensure that the equations for sort data are completely

defined otherwise there may be deadlock without diagnosis.
process TestEvent [g,f1,...,fail_data,fail_gate,fail_both](e:Data,
z:Pset) : exit :=
choice zz: Data []
[zz eq e] -> (* Correct Data *)
(
gle; exit (* valid input *)
[

fi'zz; fail_gate; stop

(* Incorrect gates *)

169

)
l

[zz NotIn z] —-> (* Incorrect Data *)

(

g'zz; fail_data; stop (* but Correct Gate *)
filzz; fail_both; stop

(* Incorrect data and gates *)

endproc (* TestSet *)

Note: It is possible and convenient to define another process simpler than TestEvent, which

caters for the special case when there is no choice in 5.

5.7.3 Observations

The complexity of the algorithm in terms of a simple LTS setting and BASIC
LOTOS is not severe for finite transition systems. In general, the main structure of 7°(.9)
is actually more simple than that of S: the iterative design of the algorithm generates a
tree-like structure for 7'(.9) consisting essentially just of traces from S further, 7(5) allows
only one path for a given trace. The extra bits of 7(.9) are the short failure branches that
show lack of robustness (or trace inclusion).

The main computational concerns are the determination of the acceptance sets
after a given trace. This depends upon the size of the label set and the intricacy of S in
terms of the number of different ways of performing a certain trace. For our subset of Full
LOTOS, additional concerns are in being able to reduce the specifications to the required
form, resolving any predicates. In general, this may only be practicable if a tool such as
SMILE’s conversion to EFSM can perform the reduction automatically.

In the special case that S is a tree, then the computations for the acceptance set
are very simple in nature and manual translation for at least small size specifications is
realistic.

This has enabled the implementation of the algorithm described in sections 5.7.1

170

and 5.7.2, for which general expressions have been given.” the special case which we have
tested on one or two simple examples, which are illustrated for Flexport in the next chapter.
At present, the tester is generated manually and it is evident that it soon becomes quite
unwieldy. However, it should not be too difficult to generate the canonical tester specifica-
tion automatically from the acceptance sets of 5. As already noted, a further refinement
would be to code the behaviour of 5 as a data type, in which case the tester would have a
very neat expression.

The simplified case shows how the implementation of the unifed tester can be
enhanced in structure by defining a special process that handles trace inclusion, effectively

allowing this test to be abstracted out from the main tester process.

5.8 Discussion: Alternative notions of conformance

It is worth considering still other relations which provide different formal interpre-
tations of the notion of implementation, conformance and reduction. Some experimental
work has been conducted for a novel relation, cut, denoted <.,;, that we argue may serve
as a useful alternative to <,.4 as an implementation relation that can be used for reducing
specifications, and which can be tested. In this setting, robust and conforming imple-
mentations are considered to be those processes constructed simply through reducing the
specification by allowing non-deterministic branches to be optionally incorporated in the
implementation, whilst preserving ’benign’ choices. This is in accord with the notion that
reduction decreases the amount of non-determinism. Hence, this relation keeps the same
notion of robustness, but differs in the notion of conformance (for which a new relation
confy is defined).

The fact that the cut relation is somewhat different is evidenced by the existence
of IUTs that will satisfy <..:, but will either fail to be a reduction or to satisfy the testing
pre-order, or possibly both. Conversely, there are ITUT’s that satisfy the reduction or testing
preorder, but not the cut relation. Another difference to note between conf and conf, is
that the latter allows as valid implementations path extensions; these fail the cut relation
only through failing trace inclusion.

Once again, we look at conformance testing for finite Basic LOTOS specifications,
and we show the existence of a single test process (a canonical tester) which is able to
determine whether or not an implementation under test I is a cut of a specification 5. We
also term this particular canonical tester the unified tester since it is simultaneously a tester

for both confg and the trace preorder relations.

171

Owing to the simpler nature of the tester, for a certain class of Full LOTOS
behaviour expressions, we are able to refine the tester to provide useful information about
an IUT’s (mis-)behaviour. This is achieved by enriching the set of observers so that it
gives diagnostics in the case that a test fails through failure to synchronise. Further, by
appropriate definition of the data types, we are able to realize the tester in a fairly simple

way as a specially designed LOTOS (text) definition.
Examples

Example 1 Any deterministic choice must be preserved in the implementation. Further, if
a choice is implemented, at least one of its branches must be implemented fully:

Let S = a;b;stop [c;d;stop, then we wish to allow the following to be a valid
implementation: I1 = S, but not I2 = a;b;stop, I3 = c;d;stop or 4 = a;b;stop [] c¢;stop

Example 2 In a composite choice with deterministic and non-deterministic elements, any
non-deterministic branch may be omitted:

Let S = a;b;stop [i;c;d;stop [1 i;b;stop, then we wish to allow the fol-
lowing to be valid implementations: I1 = S, I2 = a;b;stop [] c;d;stop, but not I3 =

c;d;stop.

Example 3 If there is offered only non-deterministic choices, at least one branch must be
implemented:

Let S = a;b;stop [] a;c;stop, then we wish to allow the following to be valid
implementations: I1 = S, I2 = a;b;stop and I3 = a;b;stop, but not S = stop

(similarly for non-determinism arising through internal action prefixes.)

5.8.1 Comparison between two notions of conformance

Since in any parallel composition, the semantics of LOTOS give pre-emptive power
to non-deterministic branches, more effort has to be made in the design of this tester. In
particular, successful and unsuccessful computations need to be defined in terms of the
tester passing through more than just terminal states. We illustrate our ideas through the
development of an example below, where we derive a tester for confy.

Consider S=c;(a;stop [i;b;stop). Under confy, we have that the following
processes conform: Il=c;a;stop, and I2=S, but not I3 = c;i;b;stop. In our tester, we
give priority to the benign choices, but in deriving a provisional T7'(5) from S, a simple
swap between non-deterministic choices and deterministic ones is not adequate: if T’ (S) =

i; c; 1; a;succ;stop) [1 b; succ; stop then S||12 deadlocks after both 77(.5) and 12

172

perform internal actions.

To allow for pre-empting, we wish to catch this behaviour in our tester: for those
branches in T'(5) that correspond to the compulsory choices offered in 5, we do indeed
specify branches with internal action prefix followed by the respective matching actions.
Once such a branch is taken in [||7'(5), I may still perform internal actions, whence there
will be deadlock if the next action in [is not matched in 7'(.5). However, if there is always
included such an action in 7'(.9), then choosing I to be any optional branch in S will result
in a successful computation, whence I'3 would apparently conform.

A solution to handling the pre-emptive problem is the introduction of a new type
of termination ’trip’ which may be reached when following a path that is only optional
in 5. Special ’trip” branches are allocated in T'(S) whenever there are both optional and
compulsory choices at a node Sy of 5: in T'(.9), for each choice compulsory at Sy, there is
generated an internalised branch with corresponding action; after each such action, a trip’
branch is defined for each action that is initial to the optional branches of Sn. Thus, in
our example, we define T(S) = i;c; (b;succ;stop [1 1; T1) where Tl=a;succ;stop []
b;trip;stop.

How should we use these results in determining verdicts? As before, it is clear
that we should award the first test composition the verdict ’pass’. However, both I2 and
I3 have ’succ’ and ’trip’ terminations after performing traces that start with an initial ¢’
action. They are distinguishable by the behaviour at the node from which the "trip’ branch
was executed, by considering whether or not the tester in its complete set of test runs could
have performed at the node containing the ’trip’ branch, some other action not leading to
the ’trip’ action. This is described in the next section.

A further consideration is the duplication of traces: we need to allow for cases such
as S = ij;a;b;c;stop [] a;b;d;stop where we require that I1=a;b;d;stop conforms, but
I1=a;b;c;stop does not. In this instance, we note that since a given trace in the tester
cannot dictate the path taken by ITUT when it performs such a trace, more than one path
for that trace in the tester would be superfluous, hence whenever there are traces in 5 that
have a common prefix trace, we combine them into one, and then, where there is a difference

in observable actions, the construction of T'(.9) takes account of the structure of 5.

5.9 Conclusions

In this chapter we have presented a systematic treatment of the notions of ro-

bustness and conformance in the context of process algebras, clarifying the relationships

173

between already existing work, specifically the Observation Framework due to Brinksma et
al and the Experimental System of Hennessy and De Nicola. We have developed what we
believe is a new canonical tester for the reduction preorder that is efficient in expression.

Finally, we have shown how the tester may be illustrated for a subset of Full LOTOS.

