
174Chapter 6Case study: Flexport6.1 IntroductionIn this chapter we present an industrial case study to test out some of the method-ology described in previous chapters. This consists of the formal analysis of part of the Uni-versal Flexport protocol for medical device communications[Spa89] which we introduced insection 2.7.1. The purpose of the treatment is twofold: to examine the ability of the formalapproach to model and analyse the protocol; and to validate the protocol as e�ectively asthis approach allows. The formal context is the re�nement of a speci�cation that is toincorporate successively more detail which would lead eventually towards the modelling ofthe whole of Flexport. The main languages we have used are LOTOS and temporal logic(viz the modal mu-calculus), as recommended in Chapter 2.Since the protocol is complex, we start with a simple speci�cation of a part, andthen continue re�ning this gradually in a rigorous manner. We envisage several 'paths' ofre�nement as we investigate the formal development using a number of approaches andtechniques. The heart of the formal design is in the form of speci�cations of the linkconnection phase. We support their analysis and development by distinct approaches toveri�cation and validation { the main 'machinery' { which we contrast and compare withinthe context of ongoing re�nement. The tasks are summarised in the next section.The validation typically consists of proving safety related properties, particularlyliveness. This key requirement has obvious implications for real-time operation, whichwe can usefully examine in an abstracted setting without explicit mention of time. Thevalidation is achieved through simulation and property testing, some of which are preservedthrough CPTs (see section 3.6.1).These kinds of task have been reported to varying extent in other work, usuallywith the attention on issues such as expressivity of particular formalisms and computational

175concerns. There are few examples of an engineering approach to such case studies, withthe odd exception such as a comparative case study of formalisms for automatic protectionswitching [ACJ+96] which assesses various formalisms according to software engineeringcriteria. However, the speci�cation is small (26 states, 138 transitions), and although someongoing development is mentioned, there are apparently no further reports. In our casestudy, the intensional speci�catin starts o� small (44 states, 60 transitions), but becomesmuch larger during re�nement { thousands of states and transitions.Since communications protocols have been much researched, we also are able to testour techniques with some knowledge of what to expect. Yet, although safety requirementssuch as avoidance of deadlock and livelock have been checked for numerous systems in thepast, there is seldom any indication of their being derived from standard safety analysistechniques. Further, somewhat strangely for an analytical system, there is relatively littleguidance on how to identify causes of any problems that may arise, let alone the statementand subsequent demonstration of requirements for their resolution. Some useful work onprocedures has been done, however: see e.g. the use of reachability analysis in [LS87] todetermine hazardous states of Petri Nets.It should be noted that the case study had already begun before the various pro-cedures had been developed, so some of the CM required a kind of reverse enginering: forthe ideas to be more properly tested would require a fresh case study.6.2 Instantiating in the Lifecycle FrameworkIn this section we set the development in the context of the lifecycle model devel-oped in section 3.4.1.We choose � to be an Intensive Care Unit (ICU), consisting of a number of inter-connected medical devices, and a subsystem S to be the communications protocol for thesedevices { in this particular case, Flexport. The choice of such a protocol is �tting sinceit is a safety-critical element that controls part of the communications system in the ICU,and we may expect safety analysis for the communications system to be derived from safetyanalysis of the ICU since the former may well depend upon the operating environment ofthe devices. Medical protocols have to address, in particular, the need for 'plug and play'in which a device may be easily connected to a system and should be soon up and runningsafely and reliably alongside other devices.

1766.2.1 Main TermsWe now proceed systematically to illustrate the methodology above, starting bymaking explicit what we mean by each of the respective terms.� requirements de�nition Using the terminology de�ned there, we �rst note that userrequirements (USER-REQS) were not available, so we devised a very general state-ment:the safe and dependable transmission of medical-related data between athird party system and a SpaceLabs system.This view brings out the key elements required for a safety case. For SYS-REQS, wehave the Flexport protocol which speci�es how communication should be carried outbetween a third party system and a SpaceLabs system. This details how this is to bee�ected through the use of three layers, termed Hardware Interface, Low Level LinkInterface, and Upper Level Link Interface.� The design consists primarily of speci�cations in LOTOS that are being re�ned to-wards implementation..Initially we use the document to conceive an architecture for the speci�cations andthen draw up a plan for implementation. The system will be constructed with threeaspects: the provision of a main structure to provide the necessary functionality; thehandling of all faults associated with or impinging on the various components of thestructure, revealed at various stages; and methods of control for the speci�ed faults,derived from the safety analysis.The process of construction will follow the procedure FTBuild. We hope to showthat this procedure allows closer attention to safety requirements { their derivationand validation; and that the integrated use of fault trees is a means both to identifyfault causes and then to help in proposing further requirements plus changes in themodel.� We concentrate on two tasks for the veri�cation of the protocol speci�cation. The�rst is to show the consistency of two distinct views, namely the peer-to-peer workingbetween devices and the how this is achieved through internal services within thedevices. These are termed extensional and intensional, respectively and detailed later.The second is to show the consistency between the behaviour of di�erent versions ofa given design item. Preservation of behaviour is in terms of both symmetric and

177asymmetric relations as discussed in section 2.6.1; in some cases, these ensure thepreservation of properties; if not, then model-checking may be repeated. Overallpreservation is in terms of property conformance de�ned in section 4.4.� We use the methodology of chapter 4 to perform two activities for the validation:1. derive requirements which the model must possess for it to be a valid imple-mentation of (SYS-REQS), the protocol de�nition. These ful�l the functionalrequirements to implement 'correctly' and fully the requirements of the Flexportprotocol.2. derive safety requirements for the validation of Flexport based on the require-ments de�nition (USER-REQS) and the safety analysis. For our illustration,we choose just one top level fault, develop a partial tree and formalise some re-quirements in temporal logic, speci�cally the modal mu-calculus. To check theproperties, we use various tools to initially show the properties directly and sub-sequently either re-iterate the check or use CPTs (see section 3.6.1). These arepart of the non-functional requirements, which in practice also include non safety-related requirements such as performance requirements, which are not addressedhere.The user requirements for the case study and the means to retain the focus on theseas the project progresses are discussed in the next subsection.6.2.2 Requirements AnalysisA protocol such as Flexport is originally a response to the requirements of hospitalsta�, so they determine the user requirements. An assumption seems to exist that protocolengineers know already what kind of requirements are needed by any such communicationsystem, but this should not be taken for granted. Thus, a questionnaire was devised (seeAppendix H) to try to gain some further appreciation and understanding about the kindsof hazards that may be encountered in an ICU, especially with respect to the emerging MIBstandard. Unfortunately, time and other constraints have meant that we have been unableto carry out the survey. However, this remains an important consideration, not least as away of ascertaining the awareness of and reception to such a standard amongst those whoare most likely to be exposed to it.The absence of such data is not so critical for this project since this is only aprototype development to test the framework, which requires some rudimentary knowledge

178of the operating environment to test the ideas. It su�ced to iterate the following analysesthroughout the development to keep requirements to the fore.Hazard Analysis, Risk AssessmentIn the case of Flexport we must treat the hazards that exist in communication betweendevices. To facilitate some of the brainstorming, we used a selection of guidewords forcommunication protocols (not conforming to any particular standard), loosely basedon SHARD[FJMP94]. These are given in the Appendix B.For this small scale, we do not formally determine the associated risks, but do givesome measures to be implemented.Safety IntegrityThe speci�cation is built stepwise, incorporating both functionality and methods ofcontrol for risks that arise from hazards. We anticipate that the protocol has beendesigned to account for these risks, but such analysis is not indicated. Thus, for ourformal development we have to make informal judgements in deciding both what weregard as methods of control for a given risk and what parts of the Flexport documentwe consider to specify them. We indicate how we expect the protocol to provide thesemethods of control to e�ect risk reduction, preferably risk elimination for all the riskswe may identify.In order to show that safety integrity of the system is assured we have to use a formalanalogue, since we are developing a non-executable speci�cation. Thus we formu-late the safety requirements in some formal language (another subjective step), notnecessarily LOTOS, and then seek to demonstrate that this formulation inconsistentwith the speci�cation(s). This then becomes a task of veri�cation. Subsequently, ourformalisation can validate the de�nition of Flexport, possibly pointing to ambiguities,incompleteness etc. For instance, if we identify a fault or hazard which, we believe, theprotocol, does not handle, then we shall specify it and make some recommendationfor the protocol.6.3 Overview of the Flexport protocolWe now turn to SYS REQS. The de�nition of Flexport is provided in a documentthat consists of a mixture of text description, charts, tables and diagrams. It de�nes theconnection of a Spacelabs system (station 1) to a third party device (station 2) and consistsof 3 layers:

179
Hardware Interface (cable)

Upper Level Link

Low Level Link

Upper Level Link

Low Level Link

L2L1

H1 H2Figure 6.1: Flexport's layered architecture1. Hardware interface, providing a data transmission service between stations 1 and 2,with no handshaking.2. Low Level link interface: a connection oriented protocol with low level link control toimplement secure data transmission.3. Upper level link interface: used to actually communicate numeric and waveform data.We conceive the architecture as in Figure 1, where H1, H2, L1 and L2 are regardedas Service Access Points (SAPs). Layer 1 may be viewed as corresponding to Level 1 of theOSI reference model, with Layers 2 and 3 corresponding to Level 2.The hardware layer speci�es an asynchronous protocol, with ASCII encoding and afull duplex transmission mode, thus somewhat di�erent from the MIB which is bit-orientedand half duplex. The transmission of data between the stations is in terms of packets {given as data (called a frame) wrapped in some other bytes giving information about theframe (page I-5,[Spa89]). The packets have to be passed down to the low level link and thenconverted into characters for subsequent passing on to the other station via the hardwareinterface. Thus the low level is called upon to provide services supporting the upper level'stransmission of these packets. The low level link control may be regarded as one such servicefor the upper level link.For our applications, we restrict our attention to the Link Connection phase forwhich a connection mode service is speci�ed as an enumerated list of points, given inTable 6.1. This phase is evidently a necessary precursor for any session to take place, and iscertainly non-trivial. Thus it is useful to analyse it, especially since rigorous treatment has

180Link Connect1. When trying to connect, Station 1 sends ENQ once a second.2. When station 2 receives an ENQ, it sends DLE,X ON.3. When Station 1 receives DLE, it sends X ON4. If the character received after DLE was not X ON then goto 1.If the character received after ENQ is not X ON then goto 1.5. Station 1 sends its Link Con�g Packet6. Station 2 acknowledges receipt of the Link Con�g Packet7. Station 2 sends its Link Con�g Packet8. Station 1 acknowledges receipt of the Link Con�g Packet. The two stations nowuse the lowest common settings in the link con�g packets.9. Station 2 starts sending its data automatically to station 1 at an appropriatedata rate (typically 1 reading per second for continuous data).Table 6.1: Flexport De�nition: Link Connectionpreviously been sparse. The importance of analysing this phase for medical protocols hasalready been established by initial work on the MIB [CN92, NC96]. It is hoped that thatthis work on a simpler protocol may provide useful information for the emerging IEEE1073standard.Below the list of points there is a �nite sequence, also numbered, which gives atemporal ordering of events to provide Link Establishment. This is reproduced in Table 6.2.Such a sequence is interpreted as a trace. The events of the trace are a mixture of ASCIIcodes { which we term protocol data units (PDUs) and packets (of which we use just theone { Link Con�guration). This particular trace is an example of a message sequencechart (MSC), describing in this instance the most desirable sequence for the achievementof link establishment. In general, MSCs are simple and intuitive means of specifying andrepresenting in a graphical notation the exchange of data between two or more components.They are often used to de�ne requirements for selective aspects of protocols, especially fortelecommunications. MSCs may also be given a formal semantics, thus providing a soundbasis for validation [LL94]. MSCs are subject to international standardisation by the ITU[Int93, Int96].6.3.1 Intensional and Extensional ViewsCommunication protocols possess two aspects: peer-to-peer protocols and inter-level services. Peer-to-peer communication is dependent upon the consistent performance

181
Link Establishment: Message Sequence ChartStation 1 Station 21. ENQ ---->2. <---- DLE3. X_ON ---->4. <---- X_ON5. (Link config) ----> ACK6. <---- Sequence #7. <---- (Link config)ACK8. Sequence # ---->data transmission starts hereTable 6.2: Flexport De�nition: Message Sequence Chart

182of services of lower levels. Thus to aid clarity, we make in e�ect an initial design decisionto separate concerns by using these two distinct views to generate separate speci�cationswhich are called intensional and extensional. According to the terms of the main frame-work, these will require veri�cation of mutual consistency and validation of reliability. Thismotivates the provision of two speci�cations for the connection phase of the Low Level Link,corresponding to two views from di�erent levels.1. An extensional speci�cation which provides a high level description of the desiredbehaviour, treating lower levels as a black box;2. An intensional speci�cation which possesses a more detailed description of the desiredbehaviour, especially services carried out in lower levels.The use of intensional and extensional speci�cations is quite widespread, and therehas been work done in LOTOS for the ISO reference model [CN92]. Here we derived theintensional speci�cation from the main protocol, so where there is reference to 'the [main]speci�cation', it is this peci�cation we have in mind. The extensional speci�cation, beingmuch simpler, was derived from the MSC. As the MSC is just a trace, the extensionalspeci�cation needs no architectural design.6.4 Con�guration Management PlanIn this section we present some aspects of Con�guration Management to indicatehow they support the formal development. Our reference source is [Whi91]. This does notconstitute a complete project: for instance, the development is the work of an individualwith periodic informal reviews as be�tting a research studentship. However, it is hopedthat it does serve to give a
avour of how the framework can operate on a larger scale.6.4.1 Classi�cation of the items in the systemListed below are the item types and subtypes (enumerated) and their instances(bulleted) which are used in the project. A full project would require the delivered itemsto be as complete as possible.1. Documentation(a) Client De�nitions and other O�cial Documents� Universal Flexport Protocol

183� ISO 8807 LOTOS standard� Fault Tree Handbook� References to other guidelines, e.g. background to CM (Whitgift), safetytechniques (esp. DEFSTAND00-58), formal theory, data communications(b) Technical Reports { Overview and Results of Developmenti. KUCSES Technical reports presenting overview of work in progress(c) Safety Case� Hazard Analyses� FTA (and other safety analysis)� CM Plan (sic)� RM Logs� Tools Summary2. Software(a) Speci�cations in LOTOS texti. ISO libraries for basic Data typesii. intensionaliii. extensionaliv. testsA. trace testsB. property testsC. conformance tests(b) Transformations/other representations of specsi. Transition graphs.CR 'Common Representation' format used in LOTOSPHERE.fc2 transition system in fc2 format (a common format for various suites oftools).bcg a compact representation using BDDs..net an interpreted Petri Net format (generated by C�sar).gph �nite state automaton (graph).m0 graph in AUTO format

184.aut graph in ALDEBARAN format (generated by C�sar)ii. C codeA. aid to compilation to LTSB. executable codeiii. Pictorial representations� G-LOTOS graphs� State Transition graphs generated by bcg drawWe used a variety of tools on a SUN 670, running UNIX. All these and theirversions are given in Appendix C.6.4.2 BaselinesMost of the e�ort for Flexport is devoted to supporting the LOTOS speci�cationsand how they are composed in order to model the protocol. Hence the baselines, which wespecify below, are in terms of this evolving model. They start o� with a highly simpli�edstructure, and later branch out to two alternative re�nement paths that are conceived asmilestones to aim for. Further sub-baselines are introduced to indicate changes at varyinglevels of abstraction. Baselines may be regarded as phases at which new user requirementsare introduced, re
ecting the cyclic nature of the design. It is important that these re-quirements are introduced in an appropriate order so that big structural changes are notrequired later on.1. Basic structure of architecture; Link Connection using 1 place bu�er, perfect channel,no special features implemented.2. As above except implement n�place bu�er3. Add Baud rate hunting4. Fault Inclusion� lossy channel� corrupting channel� message re-ordering channel5. Branch to two paths

185(a) Path 1� Fault Tolerancei. Add Flow Controlii. Add Error Recovery� Add Data Transmission phase� Reify data { detail Packet types de�nition(b) Path 2� Add Data Transmission phase� Detail Packet Types de�nition� Fault Tolerancei. Add Flow Controlii. Add Error RecoveryThis is illustrated in diagrammatic form in Figure 6.2 as an instantiation of �g-ure 3.2:
ρ

1
ρ

2
ρ

3

ρ
5

ρ
ι denotes a relation between configurations

ρ
4

Figure 6.2: Re�nement Graph of Main BaselinesThe �gure shows the re�nement at a high level of abstraction, with Ci denoting thebaselines and the �i denoting re�nements between baselines. At a deeper level of granularity,we have, e.g., �3 is itself a sequence of successive subre�nements { the introduction into thechannel of lossiness; data corruption and message re-ordering. Similarly, �4 and �5 consistof subre�nements for the steps in paths 1 and 2 respectively.6.4.3 Item Identi�cationThis is the task of providing each item with a unique and meaningful name. Wechoose names to indicate the baseline as well as describe its function. A naming scheme

186could be based on the item hierarchy and have as many parts as the number of levels. Ourproject is small by CM standards, so we choose names to have 2 bits plus version number:< name > : < extension >;< version >names include:� flexint:
export intensional speci�cation� flexext:
export extensional speci�cation� flexdata: data types de�nition for the speci�cations� station1, station2: stations 1 and 2� buffer: hardware channel� unitestmsc: Uni�ed Tester for MSC-based speci�cation� <spec name> t : template for <spec name> (see section 6.5.3)extensions include:.lotsrc source �le for LOTOS behaviour.lotdat LOTOS DATA Types source �le.lot LOTOS speci�cations for LITE toolset[PvEE92] (usually derived, so built from rele-vant sources).lotos LOTOS speci�cations for CADP toolset.cw CCS speci�cation for Concurrency WorkbenchVersion numbers are maintained for source components and also for some derivedelements, being simply the tuple of versions of the respective sources. The numbering isa numerical ordering governed by rcs [Tic85]. Source versions are indicated as close tothe front as possible { e.g., in initial comments for a speci�cation, and on the front pageof documentation. For derived elements, the composition may be gleaned by searchingthrough for the histories that are part of the included sources.

1876.4.4 CM and Version ControlEven for a relatively small case study such as this, it is useful to keep carefulwatch over the various components of the development. Hence we use aspects of versioncontrol under rcs together with Make[Fel79], to cover the speci�cation sources and derivedelements. We consider in detail below one main software item, the intensional speci�cation,flexint.lot, which is a derived item that has four source components: flexdata.lotdat,buffer.lotsrc, station1.lotsrc and station2.lotsrc. Each of these components isplaced under version control, so the intensional speci�cation is also a con�guration.Version control needs the structures to be determined beforehand. Guided by theprinciples of abstraction and decomposition, the baselines expressed at con�guration levelmay be decomposed in terms of the sequences of versions planned for each item and suchitems may be similarly decomposed etc. Once a complete component structure of the wholesystem has been established (so extending the list of item instances above), then one canproceed to take the top-level baselines, identify which components are within the scope ofthe various changes, e.g. 'add baud rate hunting' a�ects flexint.lot which in turn a�ectsits component station 1, but not 2. Similarly, alternative paths will be re
ected in one ormore components.In this way, one can generate the order of construction for each item, yieldingproposed stages of development for the intensional speci�cation as follows.1. flexint.lot derived itemVersions are in terms of flexdata.lotdat, buffer.lotsrc, station1.lotsrc andstation2.lotsrc2. flexdata.lotdat(a) Boolean and Natural numbers from mod-is.lot (supplied with LITE3.0) plusde�nitions for PDU's(b) addition of string type (for n-place bu�er)3. buffer.lotsrc(a) 1-place bu�er, perfect channel(b) make n-place bu�er(c) add lossiness(d) add data corruption

188
v3.1=v(2.1,2.1,2.1,1.1)

ρ
2

ρ
ι denotes a relation between versions

ρ
3

v1.2=v(1.1,1.1,2.1,1.1)

v2.1=v(2.1,2.1,1.1,1.1)

v1.1=v(1.1,1.1,1.1,1.1)

ρ
1

ρ
4Figure 6.3: Re�nement Graph of Intensional Speci�cation4. station1.lotsrc(a) simple PDU dance, no features implemented(b) add baud rate hunting(c) Add Flow Control(d) Add Error Recovery(e) Add packets(f) Add Data Transmission phase(g) Reify data { detail Packet types de�nition5. station2.lotsrc(a) simple PDU dance, no features implemented(b) Add Data Transmission phase(c) Reify data { detail Packet types de�nitionThe version of the composite item flexint.lot can then be expressed as a tuple
exint.lot,vx.y = v(v1; v2; v3; v4), where v1 denotes the version number of data types; v2 theversion number of the bu�er; v3 the version number of station1; v4 the version number ofstation2. This can then give the re�nement path indicated in Figure 6.3. In Appendix Ethere are given two tables which cover in more detail the versions (planned and actual) forthe sources and some derived items.At this level of granularity we can specify the relations we seek for the itemsin the re�nement trajectory. Since these items are formal, these relations express precise

189mathematical properties (as mentioned in section ??). Thus, for �2, we need to show thatthe new bu�er is a generalisation. Through the compositional structure this needs analysisof the bu�er item. Version v1:2 is technically a variant, but we consider it as an alternativepath on equal footing with others. The alternative path starts by implementing baud ratehunting. Both should converge at version v3.Let Buff(n) denote the model of a general Bu�er of capacity n. Then the re-quirement that the the new bu�er is a generalisation of the old is expressed as:Buff(1)v2:1 equiv Buffv1:1;where equiv denotes strong equivalence.Similarly, replacing the simple linear trace in S1 sendENQ by a Baudrate huntingroutine should be another kind of generalisation, which we can model by trace inclusion:Tr(Station1v2:1) � Tr(Station1v1:1)where for processes P and Q, Tr(P) � Tr(Q) if and only if the set of traces of Pis contained in the set of traces of Q.In this work there is no formal procedure for approval of items which are placedunder version control. However, we specify that at the minimum, each LOTOS component{ from the de�nition of Data Types to a full speci�cation of Flexport { is to be checkedfor correctness of syntax and semantics. Composite items are to be 'tested' more rigorouslythrough additional tasks, e.g. simulation, property testing and veri�cation according tothe respective requirements. Item statuses are awarded accordingly. In a complete project,one could stipulate that an item may not be approved before all the risk managementrequirements have been satis�ed.6.5 Overview of system constructionIn this section we present a summary of the steps involved in producing the variousspeci�cations.6.5.1 Architectural Design of the Intensional Speci�cationThe LOTOS speci�cations have architecture corresponding to Figure 6.1 and arebuilt in modular fashion, having three components, corresponding to the two stations plusthe physical layer. The communication process is modelled in terms of synchronisation at

190gates { h1, h2, l1 and l2 { connecting adjacent layers; actions are instantaneous occurrences,consisting precisely of these gates with the o�ering of values, plus a few other specialevents. The level of interaction between components is governed by the parallel operator jj,which speci�es the set of gates for which actions have to be mutually agreed; independentbehaviour is modelled by interleaving using the jjj operator. The speci�cation thus hasstructure given by:(Station1[h1,l1] ||| Station2[h2,l2])|[h1,h2]|Duplex_chan[h1, h2]where Duplex_chan[h1,h2] denotes a call to a process that models the behavious of thebu�er. For each station, we distinguish between two main phases of the Link Connectand Data Transmission, specifying that the successful completion of the former enables thelatter to go ahead (denoted by the enable operator '>>'). Thus, e.g., Station 1 has processde�nition:process Station1[h1,l1] : noexit :=S1_Connect[h1,l1] >> S1_DataTransmit[h1,l1]endproc (* Station1 *)Similarly, the link connection is itself can be viewed as composed of 3 subphasesand speci�ed as:S1_SendENQ[h1,l1] >> S1_TestX_On[h1,l1] >> S1_SendLCPack[h1,l1]for Station 1, andS2_AwaitENQ[h2,l2] >> S2_TestX_On[h2,l2] >> S2_SendLCPack[h2,l2]for Station 2.Once the connection is established, we model repeated data transmission as simplyas possible, just as a repeated action at the gates l1 and l2.

1916.5.2 BehaviourTo model behaviour, we introduce primitives, chosen to re
ect the view that datais identi�ed as sent and received to/from a given level, as indicated in the MSC. All 'sends'indicate a transmission downwards, whilst all 'receives' indicate transmission upwards.LOTOS has no built in data types { these have to be constructed, though there isavailable as part of the ISO standard a library of basic types (such as Booleans and NaturalNumbers) and these are supplied with the distribution of most tools. We made some useof these. For the speci�cation we de�ned PDUs and packets to correspond to the ASCIIcodes and packets used in the Link Connection of the protocol. These were implementedin LOTOS by using parameterised actions of the form g!send(v) or g!receive(v) where g isa gate, and the [send=]receive(v) is some parameterised value. Hence, e.g., h1!send(ENQ)denotes the sending by Station 1 of the PDU 'ENQ' at the SAP 'h1' down to the physicallayer. As an example, the S1_TestX_ON[h1,l1] fragment below (from version 1.1 ofstation1.lotsrc) tests for the receipt of the Transmission On indication X_ON from Station2: process S1_TestX_ON[h1,l1] : exit :=h1!send(X_ON);(choice x:PDU []h1!receive(x); ([x eq X_ON] -> exit[][x ne X_ON] -> S1_connect[h1,l1]))endproc (* S1_TestX_ON *)During the connection phase for these speci�cations, the upper level link's onlyinvolvement is in the sending and receiving of the Link Con�guration Packets. Hence, theextensional speci�cation's behaviour is a short trace.Regarding the hardware interface for the intensional speci�cation, the full duplexmode is modelled using interleaving of two simplex channels.

1926.5.3 The use of a template for the intensional speci�cationComponent source items are glued together to form a valid LOTOS speci�cationthrough the use of a template which is pre-processed using a macro processor { we employedm4, which is commonly available as part of distributions of UNIX. Among the templateswas one to generate the intensional speci�cation, which 'included' the data types de�nition,bu�er de�nition, plus de�nitions for each of the stations, given as follows:(**)(* *)(* LOTOS intensional specification for *)(* Flexport Protocol Lower Level Link Layer *)(* *)(**)(* $History$ *)(* $Log: flexint_t.lot,v $# Revision 2.1 1997/04/23 11:56:31 cs_s447# This version supports Baud rate hunting# with two extra gates 'baud' and 'tick'## Revision 1.2 1997/04/23 11:53:40 cs_s447# library call for data types omitted## Revision 1.1 1997/04/23 11:51:34 cs_s447# Initial revision# *)specification Flexport [h1,h2,l1,l2,baud,tick] : noexitinclude(flexdata.lotdat)behaviour((Station1[h1,l1,baud,tick] ||| Station2[h2,l2])|[h1,h2]|(Duplex_chan[h1,h2]))whereinclude(buffer.lotsrc)include(station1.lotsrc)include(station2.lotsrc)endspec

1936.5.4 Re�nement and Veri�cationThe re�nement is carried out within the procedure FTBuild and is driven mainlyby two aspects: the target baselines and the outcome of ongoing safety analysis. Approachesto re�nement include analysing and implementing transformations such as process re�ne-ment and action re�nement. These bring with them obligations: certain speci�c tasks ofveri�cation and validation have to be iterated for new versions. We summarise here theapproaches to veri�cation for Flexport { the validation is discussed in the next sections.In this project we use side by side two approaches to the formal veri�cation. Theseapproaches may be called 'internal' and 'external'. To verify consistency by an internalapproach, we seek to show the symmetric relation, observation equivalence, and also theasymmetric relation, the reduction preorder through the generation and comparison ofthe expanded trees for the relevant speci�cations. Apart from performing model-checkingdirectly on each speci�cation in turn, the 'external' approach of testing may be used asdescribed in the previous chapter. For this, we perform simulation of test compositions,including most notably those involving uni�ed testers.We aimed to use a selection of tools with the emphasis on minimal intervention,which we regard as an important factor that would receive more favourable considerationfrom industry, as argued in section 2.6.3. A summary of the tools and their versions isgiven in Appendix C. The speci�cations were built mainly using the LITE toolset, withsimulation performed in SMILE[EW93]. For validating properties in the modal mu-calculus,we used C�sar[FGM+92] to translate the LOTOS speci�cation into a corresponding LTS,saved as an automaton and then translated to FC2, a format designed for �le exchangebetween di�erent tools; after manual editing of action names, this was imported into theConcurrency Workbench[CPS89] where formulae in the modal mu-calculus were validated.In the next two sections we present two iterations of the procedure FTBuildincluding the derivation of safety requirements, their formulation as properties and theirvalidation; the tasks of veri�cation are also covered.6.6 Applying FTBuild : First IterationIn the �rst speci�cation we wished only to check the integrity of the 'PDU dance'which is designed to establish link connection. In order to make things as simple as possible,

194
No response from
IV pump to instructions
issued at console

Fault in
Device Interface

Fault in
Pump

Logical Fault Physical Fault

Fault in
Link Connection
Phase

Fault in
Data Transmission
Phase

Data Transmission
phase not reachedFigure 6.4: Fault Tree for system (ICU)our initial (intensional) speci�cation, S1, say, omitted all the special features. Further, weassumed a one place bu�er for each of the channels { once a low level link sends a characterdown the physical layer, then it cannot send another until the character has been receivedby the low level link of the other station.6.6.1 Fault Tree ConstructionWe constructed an initial informal tree to show how the communication system isa component of the overall system. This is given in Figure 6.4.For the protocol, we choose to start our formalisation by considering the node 'DataTransmission phase not reached'. Hence, a sample iteration of the procedure FTBuildproceeds as follows.1. Select the event E: 'Data Transmission Phase not reached'2. Event causes are:� E1: 'Deadlock [in link connection stage]'� E2: 'Livelock [in link connection stage]'3. Formalise E as the atomic proposition 'DTNR'

195
Data Transmission
phase not reached

Deadlock Livelock

E

E E
1 2E1

G1Figure 6.5: The extension to the ICU Fault Tree resulting from the �rst iteration4. E1 and E2 are alternative causes which we regard as part of a generalisation, thus wehave a generalisation-OR gate.5. The gate is formalised as GOR1, which is given as: DTNR () E1 _E2.The initial formalised fault tree has, like the initial speci�cation, a very simple repre-sentation. It is given in Figure 6.5, and has as leaf nodes 'Livelock' and 'Deadlock'.6.6.2 Requirements DerivationWe perform step 6 of FTBuild :1. We choose to omit the formal analysis of the tree2. The overall consideration is to provide assurance that any execution of the LOTOSspeci�cation carries out desired behaviour in a safe, reliable and e�cient manner. Inresponse to the events, E1 and E2, we elicit the following requirements:(a) The speci�cation should be free from deadlock { i.e. data may always be trans-mitted;(b) The link connection should be free from livelock { e.g. there should be no in�niteloops during this phase.(c) The link is (eventually) established after a �nite number of actions.The �rst two requirements are safety properties, whilst the third, a strengthening ofthe second requirement, is a strong fairness property (so 2c implies 2b).We may formulate requirement 2c implicitly by simply stating that some event(s)in the Data Transmission phase should eventually happen or, some other property

196should eventually hold. More speci�cally we could show the (weak) condition thatfor both stations 1 and 2, some event in the Data Transmission phase, but not inthe Link Connection phase, eventually occurs. A stronger requirement is to showexplicitly how the link is actually established { namely, that all execution sequences(of the intensional speci�cation) contain an initial �nite subsequence which satis�esthe protocol. Accordingly, we may look to show that all execution sequences possessa temporal ordering of actions conforming to the MSC or to some satisfactory tracebased on the MSC. As this shows precisely that link connection is established reliably,our only further concern as regards validation is to ensure that the speci�cation allowseasy computation.The safety requirements and their formalisation are derived as follows:� Gate RequirementsWe wish to preserve the gate condition, hence �(GOR1) :=DTNR () E1 _E2� Event Requirements{ E1:Informal: 'Speci�cation should be free from deadlock'. This is a safetyconditionFormalisation: �Z: < � > tt ^ [�]Z: (6:1){ E2:Informal: We treat the third of the requirements listed above: 'Link con-nection should be free from livelock' which we rephrase as 'link connectionshould established in a �nite number of steps'. We propose two alternativeformulations which indicate an open-ended problem-solving approach:(I) For both stations it is the case that eventually they are both able toperform actions that are only in the data transmission phase.If we denote by s0 the initial state of S1, then we require:Formulation of I:s0 j= �X:(< ST > tt ^ [�ST]ff) _ (< � > tt ^ [�]X); (6:2)

197whereST = fh1!send(DAT); h1!receive(DAT); h2!send(DAT); h2!receive(DAT)gOR(II)S1 should satisfy some testing relation �Rtest (such as the testingor reduction preorder) with an MSC-based speci�cation that makesexplicit a set of desirable traces.Formulation of II: S1 �Rtest MSCBase (6:3)6.6.3 Incorporation of RequirementsFor step 6c), we check that the requirements hold for the model by selecting thesecond conformance relation (de�nition 4.4.2).We instantiated the values as follows:� F 0 = fEg; hence F = E� tMAX(E) is the tree given in Figure 6.5. (We could have this as the larger tree).� �(tMAX(E)) = ft(E)� �(�) = gates(�)� � and � are de�ned above; "(g) = ;We takeM to be the LTS corresponding to S1 together with its valuation V .The conformance relation becomes:Mconf S1(F 0; �; �; �) ifs0 j=M ^�2�(ft(E)) ^g2gates(�)0@[[�(g)]] ê2g (e)1A (6:4)which reduces simply to

198(s0 j=M ((�X:(< ST > tt ^ [�ST]ff) _ (< � > tt ^ [�]X)))^ (�Z: < � > tt ^ [�]Z))_ S1 �red MSCBase (6:5)where ST = fh1!send(DAT); h1!receive(DAT); h2!send(DAT); h2!receive(DAT)g:6.6.4 Derivation of the Uni�ed TesterWe describe the derivation of the uni�ed tester (given in Appendix D.2) to testthe intensional speci�cation for robust conformance. In this instance the intensional speci-�cation is IUT .We choose the reference speci�cation S, to which IUT must conform is the MSCgiven in Table 6.2. Then we extend the MSC with all other viable connection sequencesresulting from an interpretation of Table 6.1. This leads to the more elaborate speci�cation,given in Appendix B as TestMSC. We now require that IUT conforms robustly to Test MSC,which is to act as the source S for the canonical tester.6.6.4.1 Construction of the TesterAs TestMSC has �nite behaviour and a tree structure, it is an example of the specialcase detailed in section ??. Thus we may construct it as a LOTOS process in the mannerdescribed there.First of all, to enable exhaustive testing the data types, we de�ne a super data type'DataSet' which includes a complete list of equations that enable comparisons between everyparameterised action, whether send's or receive's of packets and PDU's. The process bodyitself consists of a tree of calls to other processes - TestEvent and TestEventinChoice.The main structure of the tree is the same as that for TestMSC.Each iteration of TestEvent receives as parameters the set of events possible at aparticular node and proceeds to o�er all these events. We now explain the process in moredetail:1. For example, corresponding to the �rst event in TestMSC, which is h1!send(ENQ), the�rst call is:TestEvent[h1,h2,l1,l2,fail_data,fail_gate,fail_both](send(ENQ))

199where TestEvent reconstructs the acceptable event h1!send(ENQ) from the �rst gateparameter and the data item enclosed in parenthesis. Thus the variable 'g' is boundto h1 and 'z' is bound to send(ENQ).In the body of Test Event, the �rst part of the choice expression o�ers h1!send(ENQ); exit, plus all the other events in the label set that are possible at the other gates.If IUT synchronises on any of these, then the fail gate action is performed beforethe process terminates.The second part of the choice expression does two further tests for more diagnostics:�rst events of the form h1!zz are o�ered, where zz is not equal to send(ENQ). Anysynchronisation here will give rise to a failed termination via fail data. Finally, thelast three terms o�er events where neither the gate nor data match h1!send(ENQ),whence a failed termination via fail both.2. If IUT synchronises on h1!send(ENQ), then this process is completed via exit andthe next action to be interpreted is the next one in the body of the main process. Theprocedure is now repeated for the next action in TestMSC, i.e. for h2!receive(ENQ)and then for subsequent events. When there is a choice in TestMSC, one is given inthe uni�ed tester together with the appropriate internal action pre�xes followed bycalls to TestEventinChoice, which is like TestEvent except that this has two setparameters.For example in TestMSC there is a choice between the event h1!receive(ACK) andl2!send(LC Packet) which yields in the tester:TestEventinChoice[[h1,h2,l1,l1,fail_data,fail_gate,fail_both](receive(ACK),Insert(send(LCPacket), Insert_1(receive(ACK),{})))This tests for matches with the action at 'h1', but note the absence of the gate 'l2'.This ensures that we do not get false failure indications { the tests for 'l2' with respectto its acceptable data are given in the call to TestEventinChoice further down thepage.3. Continue in this manner until reaching the end of TestMSC and �nish each branch ofthe uni�ed tester with success;stop to denote successful termination.6.6.5 ResultsProperty conformance (equation 6.5) was shown in various ways through simula-tion, testing and property checking. The speci�cations were initially prepared using the

200LITE toolset, being simulated in SMILE, which allows the step-by-step unfolding of the be-haviour de�ned by a LOTOS expression. We chose reduction as the testing relation for therequirement expressed in equation 6.3 and constructed the corresponding uni�ed tester {given in Appendix D.2. In this case, the speci�cations were small enough such that the toolswere able to cope and provide conclusive answers. The results for the list of requirementsare given in more detail below:1. absence of deadlock Simulation of the intensional speci�cation under SMILE revealsa small tree with few branches, whose simplicity is due to the modelling of the du-plex channel by using two one place bu�ers. There were no stop indications, so nodeadlock.2. (& 3.) reliable link establishment after a �nite number of actions We used the MSCas the basis for deriving a LOTOS speci�cation UnitestMSc that was to be used as atester. The tester took account of behaviour not expressed in the MSC, yet would beacceptable for a system operating according to Flexport. This was a matter of justincorporating alternative interleavings of events in the link connection phase of theMSC.We were able to prove that the behaviour of the intensional speci�cation was a reduc-tion of the MSC-based speci�cation using robust conformance testing. Every execu-tion of the test composition below terminates successfully, showing that the intensionalspeci�cation is a reduction of the MSC-based speci�cation,UnifiedTesterMSCBase[h1,h2,l1,l2,successMSC,data_failure,gate_failure,twofold_failure]|[h1,h2,l1,l2]|FlexInt[h1,h2,l1,l2]Furthermore, following the procedure for veri�cation, we were able to compile thetwo speci�cations into LTS representations using C�SAR and C�SAR.ADT. Wethen used ALDEBARAN to compare the two LTS representations for observationequivalence. The output from ALDEBARAN indicated that the intensional and MSC-based speci�cations were indeed observation equivalent, a very strong result (whichdid not hold in the subsequent re�nement).

201For the veri�cation of internal consistency, we showed that the intensional spec-i�cation, with actions at gates l1 and l2 hidden, was observationally equivalent to theextensional speci�cation. This was done using C�SAR and C�SAR.ADT, for which thespeci�cations required some modi�cation, largely the addition of extra comments in thede�nition of data types which are interpreted for compilation into a C program represen-tation. We also had to use an alternative de�nition of the data type for Natural numbers,which was available in a library as part of CADP as there is an error in the ISO library(which is actually picked up by SMILE as well). Some other restrictions are reported insection 6.8.4.Having carried out these minor modi�cations, we were able to compile the inten-sional and extensional speci�cations into LTS representations using C�SAR and C�SAR.ADT.We then invoked ALDEBARAN to compare the two LTS representations for observationequivalence, and it duly indicated that the intensional and extensional speci�cations wereindeed consistent.We also applied robust conformance testing, deriving a tester from the extensionalspeci�cation and composing it in parallel with the intensional speci�cation, whose actionsat the physical layer were hidden:Tester_Extensional[h1,h2,l1,l2,success,data_failure,gate_failure,twofold_failure]|[l1,l2]|(hide h1,h2 in Intensional[h1,h2,l1,l2])Every execution of this test terminates successfully, showing that the intensionalspeci�cation with gates h1 and h2 hidden is a reduction of the extensional speci�cation, i.e.the two speci�cations are consistent.6.7 Applying FTBuild : Second IterationThe second iteration was engaged as a consequence of completing the 1st iterationby repeating step 6c for an initial re�nement (S2) of S1. This particular re�nement was toinclude baud rate hunting, an example of process re�nement. The model that was built isgiven in Appendix D. We describe below how performing a number of procedures for safetyanalysis contributed to its construction.

2026.7.1 Safety Analysis of Speci�cation No. 2For S2, the second version of the intensional speci�cation, we implemented 'Baudrate hunting', the recursive process by which station 1 periodically sends an 'ENQ' untilit receives a recognizeable 'DLE' in response. We assumed initially that Station 2 wasautomatically transmitting at the correct rate. Thus we were only testing additionally theprotocol's ability to handle delays in response.It was somewhat of a surprise then that this modest re�nement gave rise not onlyto state explosion (which is exacerbated by the protocol's duplex mode of operation), butalso other problems { simulation of an initial re�nement revealing various cases of deadlock;and further exploration revealed livelock. This prompted reexamination of the speci�cationto consider:1. Is the model a valid interpretation of the system de�nition of the protocol? If not,what are the inconsistencies in interpretation?2. If the model is valid and there are still problems, then is the system adequate?Initially, we assumed the design to be adequate, so we set about trying to determinethe faults in the speci�cation. In the examination of the simulation tree of the �rst versionsthat included the baud rate hunting process, we identi�ed a potential weakness in the twospeci�cations of station components in their ability to allow faithfully the duplex mode oftransmission. This mode allows for a large number of permutations in link connection, forinstance, station 2 can receive station 1's X ON between sending out its DLE and X ON(as indicated in the MSC).It was revealed that the model omitted some behaviour which we might expect(speci�cally, the constant ability to receive PDUs). Thus, the speci�cations were modifedby squeezing into both stations 1 and 2 the ability to receive data in each phase, andwe interpreted the statement \when station X receives Data Y" by an iterative waitingprocess. This enabled the removal of some instances of deadlock identi�ed earlier, but leftmany others.At this stage, we proceeded to use FTA to try to prompt the discovery of furtherinformation about what had gone wrong. We analysed the speci�cation so that the nodes'livelock' and 'deadlock' could be expanded and the faults isolated. We found that theanalysis became speci�c to the way the model is constructed, making use of the structureand style of the speci�cation. In this instance, we sought to locate where problems occurred

203within this structure and then to specify as safety requirements that these problems do notoccur. Appropriate modi�cations would subsequently be made.The procedure was enacted as follows:1. Speci�cation Structure:(a) Speci�cation structured as 3 components { 2 stations and channel.(b) Component structure for each station (as detailed in section 6.5.1): the linkconnection can be characterised as having three distinct phases (we abbreviateStation 1 by St1 and Station 2 by St2).(Station 1) Baud Rate Hunting >> Test X_ON >> Send Link ConfigurationData(Station 2) Receive ENQ >> Test X_ON >> Send Link Configuration Data2. Fault Tree elaboration and analysisFurther analysis of the simulation tree revealed that the main problem that was oc-curring was the potential for one of the stations to enter a more advanced phase oflink connection than the other through a kind of mistiming which we call phase mis-match. Hence we identify the following faults which can give rise to both deadlockand livelock:(a) Station 1 never reaches phase 3 OR Station 2 never reaches phase 3(b) There is a trace which leads to a state in which Station 1 (Station 2) is in phases1 or 2 whilst Station 2 (Station 1) is in phase 3These give rise to the fault tree in Figure 6.6.Fault (b) revealed some limitations in the guidelines for fault tree construction asexpounded in [VGHR81], particularly the sections V.1 { V.7. 'Station 1 is in phase 1 or 2'whilst 'Station 2 is in phase 3' is a kind of conjunction and at �rst glance the 'AND' gatemay seem appropriate, bearing in mind that these events are dependent. However, neitherof these events are faults in themselves, so there is no point in investigating them in isolation.The fault lies entirely in the nature of the interaction of the stations as constrained by thecommunications channel.

204
Data Transmission
phase not reached

Deadlock Livelock

E

E E1 2
E1

G1

Buffer
Deadlocks

Station 2
Deadlocks

Station 1
Deadlocks
Station 1
Deadlocks

deadlock
within
component

deadlock
due to
interaction

Phase
mismatch

st’n 2 in AwaitENQ
st’n 1 in sendLCP

st’n 1 in SendENQ
st’n 2 in SendLCPFigure 6.6: Extension to the ICU Fault Tree resulting from the second iterationThe Fault Tree Handbook appears to omit discussion of such interaction betweenevents at the same level { the inter-relationships treated are consequences of individuale�ects, not of several events. This is ampli�ed in the restrictive "immediate cause concept",which forces complex behaviour to be squashed into single events.As the handbook seems much more geared to successively working back to indi-vidual failure mechanisms, such analysis is not well supported and we have left these asleaf nodes. For further analysis, we explored the fault's cause by using the simulation tool,SMILE.6.7.2 Safety RequirementsA larger number of requirements can be generated as a result of the new eventsgenerated in the fault tree. For the new leaf nodes it appears desirable to have a state-based requirement, which in the case of LOTOS would be a means to specify requirementsin terms of the processes that have been identi�ed. Unfortunately it is not generally possibleto formulate these directly in a temporal logic such as the modal mu-calculus. Instead, wehave to use formulations in terms of event sequences and their temporal ordering, makinguse of features such as the exclusive occurrence of certain events in the respective phases.The requirements were:

205� the negation of conditions 2a, 2b above.� 'Data transmission should occur within 3 ticks'. (A special 'tick' action introduced).(We can also phrase this as: 'we can have at most three occurrences of station 1sending an 'ENQ'.)6.7.3 Modi�cations, Further Analysis and Resultsdeadlock/livelock for specs that are obs equ etc...Simulating the Baud rate hunting procedure in the light of these requirementsrevealed that when station 1 changed its baud rate, it was possible to reach a state in whicha 'send' could not be followed by a 'receive'. The following modi�cations were then triedto ful�l the requirements:1. Baud rate hunting procedure amended to allow for receives by Station 1 at any timeafter the initial h1!send(ENQ).2. The procedure TestX ON for Station 2 amended to allow a second chance for thereceipt of Station 1's X ON before returning to the start.Despite the amendments, the problem of phase mismatch was not solved. Theresulting intensional speci�cation (given in Appendix D), which implements the �rst mod-i�cation only, admits the following sequence that leads to deadlock:baud!9600;h1!send(ENQ);h2!receive(ENQ);h2!send(DLE);tick; baud!9600;(* a second elapses, so station 1 sends another 'ENQ' *)h1!send(ENQ);h2!receive(ENQ);(* therefore, character received after ENQ is ENQ, not X_ON *)(* so station 2 goes back to await ENQ, but according to *)

206(* the protocol it must first send an X_ON ... *)h1!receive(DLE);h2!send(X_ON);h1!send(X_ON);h1!receive(DLE);h2!receive(X_ON)(* so for station 1, the character received after 'DLE' is *)(* X_ON, therefore proceed with the rest of link connection *)Phase mismatch has occurred when Station 1 has sent a super
uous 'ENQ' whichis picked up by station 2 when it expects an X ON (which may well be coming immediatelyafter). However, this still left instances of livelock, occurring especially when Station 1enters its third and �nal phase in link connection, whilst Station 2 lags behind in an earlierphase. In certain circumstances, we would expect livelock: for instance, if we had allowedan in�nite bu�er; but here we used a duplex bu�er which had capacity of just 1 in eachdirection. Increasing the capacity of the bu�er did not help, generally only serving to allowthe channel to be �lled with redundant PDU's before reaching the same kind of deadlock.At this stage, we considered that we had now implemented the protocol as bestwe could in LOTOS. We then had to consider the suitability of LOTOS. Here we feltthat LOTOS was not the cause of the problems: sometimes a criticism is made that theinterleaving semantics of LOTOS can give rise to counterintuitive event sequences, but thesedo not appear here owing to the synchronisation of both stations with the duplex channel.Also, although the current LOTOS standard has no explicit mechanism for handling time,we feel our simple denotation of the passing of time { through the use of a special 'tick'action { was adequate. This action was only needed to represent a simple mechanism thatprompts the Baud rate hunting process to enter the next stage. There are timed extensionsof LOTOS (see e.g. [BL92]) which may be valuable if we are to examine more timingaspects. However, we feel that in this case, the standard (untimed) LOTOS su�ced.This leaves us having to consider fault inclusion and its associated risk. Looking atthe trace leading to deadlock indicates that this eventuality could be unlikely for it requiresthat it takes about a second or longer for Station 1 to receive a response to its 'ENQ' giventhat Station 2 receives it �ne and sends its response immediately. However, a more realistic

207assessment of the probabilities and the potential severity can only be determined by thosewith suitable experience.In summary, as the language seemed to capture the behaviour required, we haveconcluded that the protocol could be better de�ned. We followed the protocol in stipulatingthat when station 2 receives an ENQ, it really does send DLE followed by X ON even thoughit may not have received an X ON from station 1. We regard this as contributing to theproblem in mutual co-ordination and believe that it is a fault in the protocol.Having reached the conclusion that the protocol contains a fault, then we suggesta method of control for this part of the protocol. To respond to the problem of phasemismatch, this method of control imposes an added constraint on when the protocol canreturn back to the beginning to start all over again.It is implemented in Station 2 as an extension to the process S2_TestX_ON. Theextension traps repeat occurrences of Station 1's sending of the 'ENQ' that may be causedthrough lags in communication and puts Station 2 into a new process, S2_AwaitX_ON, whereit still waits for the 'X ON' if it receives further ENQ's; otherwise it duly returns to thebeginning to start all over again.This is modelled as:process S2_TestX_ON [h2,l2]: exit :=choice y2:PDU []h2!receive(y2); h2!send(X_ON);([y2 eq X_ON] -> S2_SendLCPack[h2,l2][][y2 eq ENQ] -> S2_AwaitX_ON[h2,l2][][(y2 ne X_ON) and (y2 ne ENQ)] -> S2_Connect[h2,l2])whereprocess S2_AwaitX_ON[h2,l2](yy:PDU) : exit :=choice y3: PDU []h2!receive(y3);(

208[y3 eq X_ON] -> S2_SendLCPack[h2,l2][][y3 eq ENQ] -> S2_AwaitX_ON[h2,l2][][(y3 ne X_ON) and (y3 ne ENQ)] -> S2_Connect[h2,l2])endproc (* S2_AwaitX_ON *)endproc (* S2_TestX_ON *)6.8 Experiences in developmentIn this section we present more general comments about experiences in the devel-opment.6.8.1 Building of the fault treesWe found that the task of building the fault trees for Flexport encouraged usto address faults in a more systematic and focused manner. One they were recorded inthe fault tree, then the safety analysis was well anchored. After a while, the nature ofinterplay became evident between the building of the fault tree and the analysis of themodel (particularly its simulation), with one activity leading onto the other.Although we did not make explicit the semantics for the fault trees used in theFTA methodology, we found e�ective the use of temporal logic. Note that we derivedonly one gate requirement, which was actually super
uous to the combination of the eventrequirements. Also, we did not consider the analysis of the formalised tree itself. Otherexamples are required to explore these areas.6.8.2 Re�nement and ValidationValidating the speci�cations during the re�nement of the two stations proved okayat �rst but then became problematic. For the properties, the speci�cations were simpleenough to allow instead a veri�cation approach where all the desired properties are en-capsulated in a specially de�ned LOTOS speci�cation (MSCBase). However, subsequentre�nements su�ered from state explosion due largely to the full duplex transmission mode:

209running SMILE for 24 hours (on a SUN 670MP with few other processes running) wasonly able to expand the simulation tree to a depth of 30 (amounting to some 10,000 tran-sitions). Hence, even the use of temporal logic would prove less fruitful in view of this lackof completeness.The initial versions of station 1 and 2 do not cater for either station receivingunexpected data - i.e. faults are not included. These should be considered for furtherre�nements. The incorporation of this extra behaviour means that extra traces must bepossible, so the reduction preorder will fail since trace inclusion will not hold. In thisinstance, the extension relation may be more suitable.6.8.3 On the use of Con�guration ManagementCM proved generally supportive, encouraging a disciplined approach to the project.It was particularly useful in analysing where faults were located since the use of versionsand component structure allowed fault identi�cation to be �nely tuned. However, we wereonly able to complete half of the intended baselines. The versions that were actually builtwere fairly close to those planned, though in the event some baselines required sub baselinesdue to limitations with the tools which could only have been anticipated with some priorknowledge or experience of them.6.8.4 On the Use of Tools1. From the outset it was the aim to make use of various toolsets for the speci�cationand analysis of the protocol, especially LITE, CADP and CWB. It appears thatnone of these were explicitly designed to be integrated with each other. The initialtoolset used was LITE to check syntax and semantics (via TOPO) and then performsimulation (SMILE) of the initial intensional speci�cation. However, on introducingthe extensional speci�cation and/or re�nements, one of CADP or CWB would haveto be invoked to check consistency.2. For using CADP, the �rst modi�cations required were for DATA types: extra com-ments of certain types to facilitate compilation under C�sar.adt. Since the programwas written in 'C', a technical drawback was revealed: the failure to support overload-ing of data types. Thus the send/receive equations were not supported. Fortunately,the design of the speci�cations means that the equations need only be de�ned on theparameterised bit of these, i.e. the PDU's and Packets. The equations for sends andreceives were simply dropped.

210Having made the above changes, a constraint of C�sar was evident. The �rst struc-tural change of the intensional speci�cation concerned the replacement of sequencesof >> (enables operator) since C�sar does not allow "recursive instantiation of pro-cesses to the left of >>). The error messages enabled the cause of the problem to beisolated to the station 1 and station 2 components. This was resolved immediatelyusing a CPT that preserved observation equivalence.3. CM under rcs forced closer integration of the toolsets: in order to show that versionswere derived from other versions, data types had to be isolated as a component sinceLITE and CADP have di�erent interpretations for loading libraries, e.g. givenlibraryfooendlibLITE3.0 looks for a data type foo in one of the library �les with '.lot' extension, orsome other library �le speci�ed by the user, whereas CADP looks for a �le foo.libwhich de�nes the data types, perhaps with nested calls to other libraries.Both toolsets had available in a single �le the data types de�ned for ISO8807. How-ever, they won't work with C�sar and C�sar.adt since the de�nitions make use ofnon-formal sort and operation actualization. Hence, CADP comes with its own modi-�ed versions, extensions and additions - the collection has a particularly wide selection.The LITE version works generally OK with the ISO8807, though the TOPO compilerrecognises some problems, e.g. the NaturalNumbers de�nition gives:Warning: operation 0:11 not declared correctlyThus, for compatibility, one library was created with all datatypes de�ned and 'in-cluded' using the UNIX macro preprocessor m4. This was in e�ect a replacement.4. m4 has a number of reserved words which are interpreted as macros, including 'include','len'(!) If the speci�cations contain any of these, then this will cause problems.5. (tests)Note that the tests depend upon overloading of data types, so we cannot use C�sar(and so need not cater especially for its C compiler). However, we did make use ofthe library that comes with CADP, especially for the de�nition of Type 'Natural' (in

211flexdata.lotdat v1.2 and above), though the label Nat was replaced by Natl sincethe LITE toolset reads in data type de�nitions from a speci�ed library (MOD-IS inour case) which leads to clashes.6.9 Observations and ConclusionsWe have shown that the framework with its various procedures is useful for thedevelopment of an industrial safety-critical case study, a medical communications protocol.It has shown that common software engineering 'production' methods are readily applicableto mathematical objects, and highlights naturally many of the issues relating to the appli-cation of formal methods. One of the most important aspects has been the demonstrationthat safety-related properties really can and do have a system basis. However, this work isin its infancy { the methodology needs to be tested out on a wide range of examples; and thetheory for relating requirements and models needs enhancing in the context of re�nement.It took a lot of e�ort to set up the methodology, especially the CM, but this washelpful in delineating the various tasks. For instance, the use of version control facilitatedcomparisons between various items { speci�cations of both model behaviour and of proper-ties. Further, this approach becomes more attractive in light of the fact that the frameworkwas not devised until the speci�cations had been started in a less structured manner, andthat for most of the duration of the project, the methodology was being re�ned and theoryenhanced.As expected, LOTOS proved generally suitable for formally specifying the proto-col, and we were able to specify quite easily the intensional and extensional speci�cations,including some simple timing aspects in the baud rate hunting. The success of the procedureis largely dependent upon the proof techniques for veri�cation and validation.The �rst approach we employed is based on the theory of testing discussed inChapter 5. This has the merit of having already established ISO guidelines for commu-nication systems. We were able to take advantage of the ability of LOTOS to implementtests as a single composition of (LOTOS) processes. As such, this opened up the use of allLOTOS analysis techniques, including the use of simulation tools.As our second approach, we translated the LOTOS speci�cations into LabelledTransition Systems and could then select between a number of relations for veri�cation. Wechose observation equivalence, which is stronger than any testing relation. The procedure isjust a matter of issuing a few commands at a command line prompt which, compared withgenerating a test and then simulating a test composition, is easier to perform and reduces the

212risk of human error. However, the trade-o� is that the non-interactive nature of checkinga bisimulation by a tool means that feedback is limited, sometimes to just a 'Yes'/'No'answer. To establish further information is tricky since it requires the comparative analysisof two separately evolving speci�cations.For the early versions, we were able to carry out these tasks without much e�ort:for instance, the initial versions of these speci�cations were shown to be observationallyequivalent. However, computational resources were insu�cient when we re�ned the inten-sional speci�cation to account for baud rate hunting. Also, for a given model which hasa bu�er of any size, it was observed that as the bu�er capacity increases, many deadlockswould occur further down the simulation tree. In view of the burgeoning complexity, suchdeadlock became more di�cult to spot, indicating the need for better techniques to handlecomplexity.It was found that the task of following the FTBuild procedure facilitates andprompts analysis, particularly a more complete consideration of hazards. It is initiallyquite laborious, but worthwhile; we feel it will become more straightforward with practiceand that it should then be relatively easy to provide automated support, if only in the formof a menu driven routine that prompts a complete following of FTBuild, thereby releasingthe burden of recalling what is the next step.Regarding the safety analysis, even for our simple examples, it is evident thatdetermining where a model has failed a requirement is not always straightforward. Inorder to be able to develop a fault tree in a helpful manner, it becomes important tohave a well-structured speci�cation in order to isolate causes of problems. We did not userisk management owing to lack of time. However, in Appendix G it is shown how riskmanagement could record some of the information that is generated.Regarding the protocol itself, the document appeared to contain some very ele-mentary mistakes, most of which should have been spotted in an informal examination { forinstance, there is a reference in page 1-3 to Station1 sending 'DLE' again. We assume thatthis is a misprint and should read 'ENQ'. This and other suspected errors are summarisedin Appendix F.Another general aspect was that the document was minimally prescriptive, so opento great amount of interpretation. It became manifest that many speci�cations could havebeen built that are arguably valid with respect to the document, but which have greatlydi�ering behaviour. Also of concern was some ambiguity: particularly confusing is thede�nition of Link Connect (page 1-2), where there is the placing in one table of the

213independent behaviours of the two stations, compounded by the loose use of actions.A more serious problem appears to exist in the design, leading to deadlock { asdetailed in section 6.7.1, there is the potential for one of the stations to enter a moreadvanced phase of link connection than the other through a kind of mismatch in timing.This fault was not resolved, so any safety case using our speci�cations would have this as aweakness whose likelihood and severity would have to be estimated.Throughout, we have made considerable use of a variety of tools, especially someof those in the LITE and CADP collections. It was found that when employed together theywere invaluable in the analyses, though some manipulation of speci�cations was required toenable this.

214Chapter 7Conclusions7.1 Summary of ContributionWe have presented in this thesis a new integrated approach to the development offormal models for safety-critical systems. The theme of integration has operated at severallevels: at the discipline level, we have set formal methods within the context of systemsengineering, supported by software management; at the methodology level, we have broughttogether in the procedure FTBuild the tasks of safety analysis and model re�nement; andat the theoretical level, we have enhanced formal testing by describing how the ExperimentalSystem of Hennessy and de Nicola �ts inside the wider Observation framework that wasdeveloped by the Lotosphere Consortium, and by producing a new canonical tester for thereduction preorder. Furthermore, this approach has been illustrated in the formal treatmentof a safety-critical industrial case study of a medical communications protocol.The work has consisted of:1. A state-of-the-art review that has a broad perspective� An overview of engineering methods for safety-critical systems that focuses onuser and industrial requirements. This has contained de�nitions of the main con-cepts in safety engineering, especially hazards, risks and safety integrity, followedby a discussion of safety in a software context, with the attention on complex-ity. There has emerged consequently the need for a suitable generic model thathas safety as a central provision. Hence we have reviewed a commonly acceptedsafety lifecycle model and given some motivating examples in the medical �eld.� A description has been given of what are formal methods and how they providethe rigour necessary for high integrity systems. The process of formal re�nement

215has been expressed in a (new) generic model for software development. Formalanalogues of some safety-related concepts in engineering have been identi�ed inthe formal notions of safety and liveness. These notions have been illustratedin a dual language approach of process algebra (LOTOS) and temporal logic,which are the main formalisms used in the thesis. An examination of notionsof consistency has been presented together with a review of methods of proof,covering theorem proving and model checking. Tool support for these activitieshas also been reviewed.� An indication of the level of industrial uptake has been given in a discussionof work done in the medical �eld, with particular attention to medical devicecommunications.2. A new framework for developing systems through stepwise re�nement underpinnedby a formal perspective� A deeper appraisal has been presented in the light of the system view to establishthe extent of the uptake of formal methods culminating in a survey of broaderapproaches that allow formal methods to be anchored in the production of safety-related software. This has led to an examination of approaches that bind formalapproaches with traditional safety analyses, concluding with an a�rmation ofMethods Integration.� A framework has been proposed based on consideration of the safety lifecyclemodel. The framework includes a de�nition of concepts and safety-related prin-ciples for the system and an illustration of how hazards may be captured byformal denotation and subsequently reasoned about. The formalisation includesa notional de�nition of system safety that is in terms of completeness and con-sistency.� A management perspective has been adopted for the formal re�nement that isinspired by the work of Bustard et al [BW94], but treated much more with formalmethods in mind. In this thesis, the design items have been formal models anda generic graph model has been presented for Con�guration Management, whereformal relations are required between the items, satisfying notions of behaviouralconsistency as in work conducted by, e.g., Bowman et al [SBD95].3. A new methodology that integrates the processes of deriving requirements from faulttrees with the development of a formal model

216� A review of the use of fault tree analysis for software has been conducted whichhighlights the role of formal methods in sharpening the quality of analysis. Anexample has been given that shows how the close scrutiny of semantics canexpose the potential weaknesses of informal approaches, supplementing similarother observations by G�orski [G�94] and Bruns and Anderson [BA93].� At the heart of the methodology a novel procedure FTBuild has been developedthat integrates the usually disparate activities of system safety analysis, there�nement of formal models and their validation. The procedure achieves thisby specifying a method based on the step-by-step construction of fault trees.� A common formal semantics grounded in labelled transition systems has beende�ned for the fault tree analysis and systemmodels with a procedure for derivingsafety requirements based upon events and gates in fault trees. This has includeda general means of formally evaluating events and gates, at any position in thetree.� Work of Bruns and Anderson[BA93] that relates fault trees to models has beengeneralised to new conditions for conformance and consistency for models withrespect not just to gate conditions, but to more general requirements. This hasbeen supported by a discussion of issues in the formal analysis of trees; and ofcriteria for relations for property conformance between trees and models.4. An enhancement of the theory of conformance testing, with special focus on robustness� An introduction to testing and the formal perspective has been presented, intro-ducing the main concepts plus some examples to aid understanding of the theorythat follows.� The Experimental System of Hennessy and De Nicola [Hen88] has been integratedthoroughly within the Observation Framework of Lotosphere [ABe+90]. Thework has centred on the reduction preorder (the conjunction of the conf relationand trace preorder), complete with a proof that reduction is testable.� A new uni�ed canonical tester has been derived for the reduction preorder forBasic LOTOS, based upon a newly de�ned acceptance function. In additionthere has been given a method for implementing the tester as a specially de�nedLOTOS process for a subset of Full LOTOS (�nite processes with predicates andguards resolved).

217� A number of assorted Lemmas and examples have been included to illustratethe de�nitions, plus guidelines to facilitate the use of the reduction relation inpractice. The perspective is further rounded o� by a discussion suggesting othernotions of conformance.5. An industrial case study to illustrate the methodology and theoryA safety-critical system of a medical communications protocol has been analysed usingthe framework and methods developed in the thesis.� Speci�cations in LOTOS have been prepared and re�ned of part of the LinkConnection phase for the Flexport protocol[Spa89]. The re�nement has beenconducted within the proposed framework, using a modular approach for thespeci�cations based upon the architecture of the system.� Two iterations of FTBuild were conducted, forming the basis for various kinds ofanalysis, supported by a suite of toolsets. For the initial model (with no features),internal consistency was shown between two views of the system { intensionaland extensional { through the demonstration of observation equivalence. Forthe demonstration of safety-related properties, a canonical tester was generatedfrom a speci�cation based upon the MSC in the manner prescribed earlier in thethesis. It was shown that the initial intensional speci�cation conformed robustlyto this, so proper link connection was assured in a �nite number of steps.� For the second iteration which included Baud Rate hunting, simulation of themodel and the development of a fault tree have been employed in tandem for thesafety analysis. These highlighted weaknesses in the document presentation andmay have revealed a fault in the de�nition. Speci�cally, it was found that thedesign of the baud rate hunting process may lead to a mismatch between the twostations: after initial contact is made, one may miss an acknowledgement fromthe other and return to a state where it is still waiting for the �rst PDU, whilstthe other has proceeded to a later stage in link connection.7.2 Results and Assessment of ContributionThis thesis advocates the use of formal methods for safety-critical systems. Yet,the most valuable distinctiveness of the material here, especially the case study, lies in theemphasis on methodological continuity from requirements through to system modelling.

218This has enabled the rigour of formal methods to breathe through the process in a supportivemanner, thereby enhancing their role.For the development, we have combined fault tree analysis, software managementand formal methods in such a way that they encourage greater discipline and providecoherent analysis. These points are discussed in more detail below.7.2.1 The safety-oriented frameworkWhen we decided to tackle systematically the problem of validating a communica-tions protocol, we initially dwelt on traditional concerns of formal methods, but it becameclear that demonstrating the safety of this or any other high integrity system really needsan integrated perspective which allows one to translate safety-related engineering conceptsto a formal setting and keep them in focus throughout the software development.So we have adopted such a perspective by producing a safety-oriented frameworkwhich drives both the employment and further investigation of the mathematical theory. Forinstance, the consideration of system hazards in section 3.5.2.1 led naturally to a formulationof completeness and safety; this approach also was instrumental in the work on propertyconformance in Chapter 4. Thus formal methods are well grounded in the needs of realsystems, rather than
oating in isolation, as often appears. Basing the development arounda safety lifecycle model has meant that user requirements are kept to the fore, so propertiesthat are shown are relevant.Formal methods have not gained much favour in most companies, which are notusually prepared to su�er much disruption in their procedures to accommodate what theygenerally admit is a technology that has high potential. The emergence of more nationaland international standards will provide some useful impetus, but it would be much betterif companies volunteer without coercion. An important factor in this regard is educationand training, where it is worth noting that large companies with big research departmentscan be expected to be aware of and employ state of the art techniques and be familiarwith all the relevant standards; problems are far more likely with small companies makingrelatively small (or targeted) contributions. They rely more on external contacts such asacademic departments.Thus we have used Methods Integration, integrating FTA with formal re�nement,itself a dual language framework, since we believe it to be a very important means ofencouraging the use of formal methods by allowing current practices to continue whilstabsorbing formal approaches. Certainly, this strategy is being investigated by a numberof centres, so our approach of matches current thinking. Our contribution is one of the

219very few that have managed to establish proper roles for formal approaches with regards tosafety analysis.Another important but much neglected area is software management to supportformal development. We have addressed this by bringing to bear to the re�nement of spec-i�cations aspects of CM. These have a simple formal conception as has been illustratedthrough a directed graph model showing how formal relations exist between design itemswithin CM. This has supplied a useful indication of how formal support and formal con-struction may eventually be married.Overall our work has shown, amongst other things, that safety-related propertiesreally can and do have a system basis. Also, as an indication of its viability, many of theusual theoretical issues in formal methods are raised quite naturally.7.2.2 The ProceduresWe feel that FTBuild is a signi�cant methodological innovation that unites thesafety analysis technique of fault tree analysis and the development of formal models. Re-quirements are generated directly from the FTA and comparision of requirements with themodel may be performed immediately. Although we provide formal semantics based onLTS, the procedure is independent of such semantics and as such is able to encompass allthe activities of CSDM [BCG91], one of the few models that provide a formal basis forsafety analysis.Fault tree analysis imposes extra discipline and is di�cult. It requires expertisein fault �nding and really needs the practitioner to have detailed knowledge of the kind ofsystem being built { a skill that is developed with experience, lying outside formal methods.On the other hand, we contend that with appropriate tool support (intimated below) safetyanalysts may successfully employ formal methods.It should be straightforward to incorporate the procedure FTBuild within a com-pany's already existing safety analysis procedures. This is due to the procedure allowingformalisation to be invoked at any stage during the development of both the fault tree andmodel, which may be regarded as concurrent activities subject to any amount of mutualconstraint. The process of formalisation is
exible on a number of accounts: for any eventor gate any number of requirements may be generated, the nature of the requirements notnecessarily in terms of the events in the tree. Further, in the �eld of relating requrements tomodels, the generalisation of the relations of consistency expressed in [BA93] should prove aworthwhile extension that makes for more realistic use { evidenced by our case study (there

220is no case study given in that paper).Although the procedure is independent of particular semantics, it is worth notingthat the choice of LTS semantics has allowed for direct validation of requirements with re-spect to models, in contrast to some Integrated methodologies that require transformationsbefore consistency may be checked.7.2.3 The Main Theoretical ContributionThis thesis has properly motivated a number of issues regarding theory, especiallythe need to handle complexity. A vital requirement that has been highlighted here { both inthe notion of system safety and in terms of computational concerns { is the demonstrationthat formal methods can satisfy completeness as well as be able to demonstrate correctness.Completeness is essential for safety, hence our main theoretical contribution, the work onconformance testing, has emphasised robustness.Robustness is the key requirement for safety-critical systems. Most work on con-formance testing has tended to omit this consideration due to computational requirements.However, for safety-critical systems the omission of certain behaviour can be perilous, so wehave concentrated on this issue. The LOTOSphere Consortium produced a vast output inthe early 90's regarding testing, but relatively little has been published beyond the reportssuch as [ABe+90]. This may be an indication of its poor uptake, which could be due to anumber of reasons, one signi�cant one being that the theory is subtle and hence less acces-sible. This is probably due to the requirement that in this framework speci�cations cannotbe analysed directly, but only through observation.Problems can persist if the theoretical foundations are often assumed and notalways clear to developers. This was the case for the reduction preorder that has beenestablished as a testing relation with respect to the Experimental System of Hennessy andDe Nicola, but in the literature we have only been able to �nd a brief paragraph alludingto this link [BAL+89]. Our thorough treatment has �lled in the gaps and should clarifyunderstanding of this fundamental relation.The next issue that has been treated is the implementation of the tester for re-duction. Again, this had only been alluded to due to the major obstacle of state explosion.Nevertheless, as we have argued previously, there are �nite state systems where this is notthe case. Thus the new canonical tester we have provided for reduction is bene�cial andits design leads to useful diagnostics in the case of failure. Finally, the applicability of thetester has been demonstrated for a special class of processes through the implementation ofthe tester in a subset of Full LOTOS, allowing comprehensive analysis through simulation.

221We have also provided examples and some guidelines to clarify the use of thereduction preorder since it is not immediately clear what conforming speci�cations looklike. A few of the examples show that the relation has some undesirable aspects, which hasled us to consider that some alternatives may be useful.7.2.4 Findings from the Case StudyA novel feature of this case study was the emphasis on the safety-oriented nature ofthe design, built up from consideration of user requirements, and employing methods suchas parts of software management which included RCS version control for all the speci�cationcomponents. The two iterations of FTBuild procedure showed that safety analysis becamemuch more focused, enabling us to make observations within contexts that are perhaps moreindustrially realistic. These observations are reported in chapter 6;we make just a coupleof points here { about tools and about fault tree analysis.Having decided to use more than one toolset, the use of version control forcedus to determine the extent of their compatibility. We found that in order to make use ofveri�cation and validation facilities for Full LOTOS, the CADP toolset was indispensiblesince it was the only one that possessed a well developed component C�sar (early versionsgoing back to the late 80s), that is able to accept as input a very useful subset of FullLOTOS and generate a transition graph ready for input into other tools. Moreover thistoolset is still being developed and extended. It is well supported: on encountering bugs inone of the tools (bcg), the response was swift and several hours were spent in working atthe problem.However, this particular problem { essentially the inability of the �le converterbcg io to parse certain control characters discovered in text �les { was not really resolved,and seemed to hinge upon some �ckle problem in the setup in the user account on the UNIXsystem. Even though a simple alternative procedure of running the program in a temporarydirectory worked OK, this showed some fragility in such tools.Overall, the tools that have been developed are very useful and we were able toperform analyses which would not have been possible by pen and paper. However, they stillhave some way to go before they o�er both a reliable and complete enough set of facilities {for instance, it would be useful if more relations could be catered for. The greatest omissionappears to be tool support for safety case development that includes formal items.As a prerequisite, there needs to be better integration of what is currently available:at present there are some di�erences in the input accepted, though minor, which make it

222obvious that little e�ort has been made in this direction. These may be largely dependentupon greater co-operation between the tool producers: no single tool can do everything,but if it various functions can be partitioned, then more completeness is possible and whenthe toolmakers have established their respective bounds, then reliability should improve.We have shown that the procedure FTBuild is e�ective by illustrating it foraspects of the Flexport protocol, though the elaboration of fault trees is not easy. Someof the di�culty lies in the fact that they can be developed in a variety of ways, dependingupon the viewpoint chosen in the search for causes: for instance, one can choose betweentemporal and structural event causes. In this case, the generalisation at a gate can bebased on temporal inconsistencies, or faults in the physical or logical structure, which areparticularly pertinent to communication protocols. We found that some of these di�erencesare well highlighted by considering guidewords, adding weight to the contention that aHAZOP-style approach is advisable in FTA. Hence, to re
ect the various ways of developinga tree, it seems preferable to talk about a family of fault trees for a given fault, deriverequirements for each and validate the model with respect to all of these.7.3 Scope for Future WorkThe formal development of Flexport within the framework is only in its initialstages and has concentrated on bringing together common methods and tools. The frame-work is thus an early prototype that has achieved some validity in the case study. The casestudy should be continued so that some of the many issues raised, particularly in Chapter3, may be addressed more fully. For instance, the issues surrounding change and formalmethods should become clearer if the case study is increased in scale, which would probablyrequire a team of developers rather than an individual. Then greater experiences could begained into the parts played by the processes described in sections 3.6 and 3.6.1.Similarly, the work described in FTBuild is also a prototype in its infancy { theprocedure needs to be tested out on a wide range of examples; and the theory for relatingrequirements and models needs enhancing. It would certainly be useful to extend theFlexport speci�cation accordingly: the continuation of the re�nement, perhaps promptedby the development of other trees, would enable a much better assessment of how well themethodology works in practice.In increasing the complexity of the system, proving the same underlying proper-ties will likely require more e�ort, with the inclusion of more sophisticated mathematicaltechniques such as the invocation of more results on processes and also the greater use of

223temporal logic. For instance, we may no longer expect to know a priori how a link maybe established in terms of sequences of events { hence, we would seek to show equation(6.2) rather than (6.3). The application of the testing methodology would likely changeto validating partial behaviour of the speci�cation { perhaps showing that after a giventrace, a given speci�cation conforms subsequently for n steps. In any case, a combinationof approaches to veri�cation and validation seems sensible.We list below some of the many issues that may be examined by incorporatingthe remaining features of the Low Level Link Interface that were speci�ed in the targetbaselines (i.e. timing elements,
ow control and error checking). It would be valuable toaddress these with or without reference to the case study.1. Notions of Correctness Bisimulation-based observation equivalence has been shownsuitable as the cornerstone for internal consistency. Bisimulation is general enough tocover any level of abstraction. However, it is not generally suitable as a re�nementrelation where behaviour is either added or removed. We have looked at the case ofremoving (optional) behaviour, for which the reduction relation is more suitable. Itwould be useful to look at the extension relation, which is the counterpart to reductionin that it allows extra behaviour. How could robustness be treated then? It wouldalso be useful to develop some laws for processes which satisfy the various notionsof conformance, analagous to those that have been developed for equivalence andcongruence. This would enable the simpli�cation of problems.2. Action re�nement Taking the general design methodology of step-wise re�nementrequires a theory for allowing transformation from one level of abstraction to another.We can achieve this for process algebras by grouping the processes into modules andtreating these as actions at a higher level. Or, conversely, we may transform a singleevent into some process, either by the use of syntactic substitution or the de�nitionof a special re�nement operator. This is the notion of action re�nement which hasbeen explored in depth [AH94], but remains hardly tested in practice. For LOTOS ithas been argued that the given interleaving semantics for LOTOS makes for unduecomplexity [CS93].Action re�nement may be implemented in the intensional speci�cation of Flexport:the single action which denotes a conversion from a packet to a sequence of PDUscan be replaced by some process which provides more detail on the conversion. Theprocedures can can then be assessed in more general contexts.3. Safety properties In our initial speci�cation, we were able to demonstrate through

224an argument based on a testing preorder that some very strong properties held. Onre�ning the speci�cation, this has no longer been the case and such validation may bebetter performed through partial testing together with checks of properties expressedin temporal logic. It is a fact that safety properties are preserved in speci�cationsthat are bisimulation equivalent. But what about weaker relations? This questionought to be examined also.4. Expressiveness of LOTOS as a Process Algebra The LOTOS speci�cation of Flexportused a number of structuring operators which allow for modularity and other aids tostyle. The re�nement may be extended to investigate whether or not extra componentssuch as
ow control can be slotted in without having to recon�gure the speci�cation.If LOTOS is found inadequate, it should be proposed how it may be improved.5. Expressiveness of Process Algebras How prescriptive should an initial speci�cation be?Is an initial speci�cation in a process algebra too restrictive? Would speci�cations insome modal process logic [LT88] be better and if so, what notions of re�nement shouldbe used? Can such modal speci�cations be eventually transformed into standardprocess algebras? Some work has been done with respect to CCS that indicates thatthe use of modal logic may be necessary for modelling some kinds of uncertain faultswhere process algebras can 'overspecify' [Bru95].6. Expressiveness of Logics How expressive are each of the temporal logics? The modal-mu calculus has been shown powerful enough to express a range of safety propertieshere and elsewhere [BA91, NC96]. During the re�nement of the Flexport speci�cation,more elaborate properties will be needed and perhaps in some other logic to compare.The introduction of an unreliable channel in the Flexport speci�cation will require themodelling of uncertainty of actions. The main mechanism for modelling uncertaintyin LOTOS is the use of non-determinism, particularly via the internal i action. Itmay be established how well LOTOS handles such unreliability and worth consideringalternatives, possibly leading to the construction of some 'modal LOTOS' (see above).7. Time Communications protocols typically have timers and allow for unreliable cir-cumstances in transmission. For Flexport, we have already modelled a simple timingaspect in the 'Baud Rate Hunting' process, for which we believe the model was ade-quate. The inclusion of more timing aspects would enable a better determination ofwhether or not (unextended) process calculi are lacking in their ability to model these,and if so why. It is widely reported that issues such as timeliness need extensions,

225and a number of extensions have been put forward. Indeed, an international workinggroup has included two approaches to time in an extension of LOTOS [ISO95]. There�nement of Flexport would supply more evidence for the validity or otherwise ofsuch contentions.8. Relating requirements to models The conformance relations de�ned in Chapter 4 maybe re�ned as and when further experience is gained in applying FTBuild to casestudies. On a di�erent note, it would be useful to compare alternative formal theoriesthat related fault trees to system models. Work undertaken in CSDM involving PetriNets could be fruitfully integrated with work into system modelling using Statecharts[Nowicki].9. Enhancement of the testing theory It should be fairly straightforward to apply thetester to more specialised contexts. One may introduce conformance modulo a �xednumber of transitions. The consideration of alternative relations to reduction es-pecially through reasoning about small examples (like our vending machine) shouldlead to more insight into what is required by developers from re�nement relations inprocess calculi.7.3.1 Towards a fully automated tool for formalising safety analysisThe enhancement of the methods and theory raised as issues above should even-tually have automated support in the form of a toolset that integrates safety analysis,con�guration management and formal methods. We provide below a taste of what to aimfor. Ideally, the safety expert should be able to formulate the requirements for thesystem builder without having to know much about temporal logic. So one requirementfor the toolset would be to develop a formal language which is easy to interpret. In thisrespect, one may develop a kind of 'front end' to logical formula, in terms of a 'Natural-looking Language' for Safety Analysis, which we may call SAFELINGO.Consider FTA, for example. If one looks at the events written informally in afault tree, it becomes evident that the phrases often make use of just simple constructs withlarge amounts of repetition, particularly of some verbs and conjunctions ('when', 'until' etc).Most such constructs have been formalised in some language of logic. So it is conceivablethat SAFELINGO may be built up by being an essentially some logic TL, say, but withsyntactic sugaring that has words recognisable in natural language and a sentence structurewith rules for syntax and semantics. This should be such that there is a well-de�ned

226mapping for each valid sentence in SAFELINGO to a corresponding sentence in TL.The safety analyst is then able to express events in SAFELINGO which can thenbe formally analysed. Ideally, he or she would acquire these from some dictionary, perhapsstandardised, of informal safety-related requirements and their formal counterparts in aselection of formalisms. If the analyst �nds SAFELINGO not expressive enough for someproperties, then he or she can try to formulate directly the desired event/property in TL.There exist already a number of graphical tools which support the construction offault trees { the Safety Arguments Manager (SAM) is an example. Any such tool can nowbe augmented by the incorporation of SAFELINGO and TL. If also we have a model Msuch that TL and M have the same underlying semantics, then we may have an integratedsystem for conducting safety analysis and analysis of models.The construction of fault trees and subsequent safety analysis for the model maybe then be conducted within a procedure as follows.1. An event E is created by de�ning an event box type for the output plus box types foreach of the inputs.2. E may now be written as a sentence in SAFELINGO. On-line help may consist of aselection of template sentences to choose from.3. Some analysis of the tree per se may follow event splitting: e.g., Chap VII of FTHand-book [VGRH81]:\tank rupture due to internal over-pressure caused by continuous pumpoperation for t > 60 seconds"Splitting is triggered by words 'due' and 'caused by', thereby giving rise to a branchof three events. (analyst will be given option of how much to split)....4. The next stage is to generate requirements forM . (internal step): A translation fromSAFELINGO to TL is performed5. A gate condition may be selected from a list of choices.6. A model M is selected according to speci�cation and version.7. On selecting an option 'Validate Model M for Fault Tree', one is requestedto select validation criteria such as conformance and consistency relations (defaults

227available) and then hit 'CR'. For some relations, this may involve selecting (with amouse) a selection of those events and gates de�ned so far. Events and gates are thentranslated to TL to be checked for the model according to the speci�ed criteria usingsome model checker (perhaps an external program). Feedback is given to indicatewhether or not the model is valid, and if not some diagnosis as to why not.... etc.7.3.2 Other avenuesThe majority of work for process calculi has emphasised the behavioural analysis.There has not been a great deal of consideration of data and, in particuler, relatively littleformal examination of re�nement which explicitly pays attention to Abstract Data Types.Yet data has been at the centre of the recent software engineering paradigms, such asthe various
avours of object-oriented approaches. Some consideration has been given toLOTOS since it has a very useful subcomponent of ADTs, based on ACT ONE. There hasbeen some work in a formal object-oriented design framework in LOTOS [Gib93] and issuesof translation from ASN.1 to ACT ONE [Tho93b], but very little work on real-life examples.Motivation for further research in the area comes from many applications, in-cluding the MIB, where an object-oriented language for virtual medical objects, has beenspeci�ed in ASN.1, �tting in the top layer [SW90]. Thus, it would be useful to analyseLOTOS's ability to handle the modelling of data types and, especially object-oriented con-cepts, basing the analysis on attempting LOTOS speci�cations of the upper layer of theMIB. This would complement work already carried out in [CN92, NC96].Another area is Software Metrics, which are a useful means for determining assess-ment criteria and encouraging/promoting software quality. Although we have not discussedthem explicitly, we have actually de�ned at each stage in the lifecycle relations (valuations)that lend themselves to metrics, so it would be interesting to see whether a system couldbe developed to make this link worthwhile.Here we have treated safety-related requirements. Other requirements such asmission and performance requirements could similarly be formulated and tested for somenotion of 'conformance', thereby leading to a potentially complete and integrated require-ments driven methodology for validating formal models.

