174

Chapter 6

Case study: Flexport

6.1 Introduction

In this chapter we present an industrial case study to test out some of the method-
ology described in previous chapters. This consists of the formal analysis of part of the Uni-
versal Flexport protocol for medical device communications[Spa89] which we introduced in
section 2.7.1. The purpose of the treatment is twofold: to examine the ability of the formal
approach to model and analyse the protocol; and to validate the protocol as effectively as
this approach allows. The formal context is the refinement of a specification that is to
incorporate successively more detail which would lead eventually towards the modelling of
the whole of Flexport. The main languages we have used are LOTOS and temporal logic
(viz the modal mu-calculus), as recommended in Chapter 2.

Since the protocol is complex, we start with a simple specification of a part, and
then continue refining this gradually in a rigorous manner. We envisage several 'paths’ of
refinement as we investigate the formal development using a number of approaches and
techniques. The heart of the formal design is in the form of specifications of the link
connection phase. We support their analysis and development by distinct approaches to
verification and validation — the main 'machinery’ — which we contrast and compare within
the context of ongoing refinement. The tasks are summarised in the next section.

The validation typically consists of proving safety related properties, particularly
liveness. This key requirement has obvious implications for real-time operation, which
we can usefully examine in an abstracted setting without explicit mention of time. The
validation is achieved through simulation and property testing, some of which are preserved
through CPTs (see section 3.6.1).

These kinds of task have been reported to varying extent in other work, usually

with the attention on issues such as expressivity of particular formalisms and computational

175

concerns. There are few examples of an engineering approach to such case studies, with
the odd exception such as a comparative case study of formalisms for automatic protection
switching [ACJT96] which assesses various formalisms according to software engineering
criteria. However, the specification is small (26 states, 138 transitions), and although some
ongoing development is mentioned, there are apparently no further reports. In our case
study, the intensional specificatin starts off small (44 states, 60 transitions), but becomes
much larger during refinement — thousands of states and transitions.

Since communications protocols have been much researched, we also are able to test
our techniques with some knowledge of what to expect. Yet, although safety requirements
such as avoidance of deadlock and livelock have been checked for numerous systems in the
past, there is seldom any indication of their being derived from standard safety analysis
techniques. Further, somewhat strangely for an analytical system, there is relatively little
guidance on how to identify causes of any problems that may arise, let alone the statement
and subsequent demonstration of requirements for their resolution. Some useful work on
procedures has been done, however: see e.g. the use of reachability analysis in [LS87] to
determine hazardous states of Petri Nets.

It should be noted that the case study had already begun before the various pro-
cedures had been developed, so some of the CM required a kind of reverse enginering: for

the ideas to be more properly tested would require a fresh case study.

6.2 Instantiating in the Lifecycle Framework

In this section we set the development in the context of the lifecycle model devel-
oped in section 3.4.1.

We choose ¥ to be an Intensive Care Unit (ICU), consisting of a number of inter-
connected medical devices, and a subsystem 5 to be the communications protocol for these
devices — in this particular case, Flexport. The choice of such a protocol is fitting since
it is a safety-critical element that controls part of the communications system in the ICU,
and we may expect safety analysis for the communications system to be derived from safety
analysis of the ICU since the former may well depend upon the operating environment of
the devices. Medical protocols have to address, in particular, the need for ’plug and play’
in which a device may be easily connected to a system and should be soon up and running

safely and reliably alongside other devices.

176

6.2.1 Main Terms

We now proceed systematically to illustrate the methodology above, starting by

making explicit what we mean by each of the respective terms.

o requirements definition Using the terminology defined there, we first note that user
requirements (USER-REQS) were not available, so we devised a very general state-

ment:

the safe and dependable transmission of medical-related data between a
third party system and a SpacelLabs system.

This view brings out the key elements required for a safety case. For SYS-REQS, we
have the Flexport protocol which specifies how communication should be carried out
between a third party system and a Spacelabs system. This details how this is to be
effected through the use of three layers, termed Hardware Interface, Low Level Link
Interface, and Upper Level Link Interface.

o The design consists primarily of specifications in LOTOS that are being refined to-

wards implementation..

Initially we use the document to conceive an architecture for the specifications and
then draw up a plan for implementation. The system will be constructed with three
aspects: the provision of a main structure to provide the necessary functionality; the
handling of all faults associated with or impinging on the various components of the
structure, revealed at various stages; and methods of control for the specified faults,

derived from the safety analysis.

The process of construction will follow the procedure FTBuild. We hope to show
that this procedure allows closer attention to safety requirements — their derivation
and validation; and that the integrated use of fault trees is a means both to identify
fault causes and then to help in proposing further requirements plus changes in the

model.

e We concentrate on two tasks for the verification of the protocol specification. The
first is to show the consistency of two distinct views, namely the peer-to-peer working
between devices and the how this is achieved through internal services within the
devices. These are termed extensional and intensional, respectively and detailed later.
The second is to show the consistency between the behaviour of different versions of

a given design item. Preservation of behaviour is in terms of both symmetric and

177

asymmetric relations as discussed in section 2.6.1; in some cases, these ensure the
preservation of properties; if not, then model-checking may be repeated. Overall

preservation is in terms of property conformance defined in section 4.4.

o We use the methodology of chapter 4 to perform two activities for the validation:

1. derive requirements which the model must possess for it to be a valid imple-
mentation of (SYS-REQS), the protocol definition. These fulfil the functional
requirements to implement ’correctly’ and fully the requirements of the Flexport

protocol.

2. derive safety requirements for the validation of Flexport based on the require-
ments definition (USER-REQS) and the safety analysis. For our illustration,
we choose just one top level fault, develop a partial tree and formalise some re-
quirements in temporal logic, specifically the modal mu-calculus. To check the
properties, we use various tools to initially show the properties directly and sub-
sequently either re-iterate the check or use CPTs (see section 3.6.1). These are
part of the non-functional requirements, which in practice also include non safety-
related requirements such as performance requirements, which are not addressed

here.

The user requirements for the case study and the means to retain the focus on these

as the project progresses are discussed in the next subsection.

6.2.2 Requirements Analysis

A protocol such as Flexport is originally a response to the requirements of hospital
staff, so they determine the user requirements. An assumption seems to exist that protocol
engineers know already what kind of requirements are needed by any such communication
system, but this should not be taken for granted. Thus, a questionnaire was devised (see
Appendix H) to try to gain some further appreciation and understanding about the kinds
of hazards that may be encountered in an ICU, especially with respect to the emerging MIB
standard. Unfortunately, time and other constraints have meant that we have been unable
to carry out the survey. However, this remains an important consideration, not least as a
way of ascertaining the awareness of and reception to such a standard amongst those who
are most likely to be exposed to it.

The absence of such data is not so critical for this project since this is only a

prototype development to test the framework, which requires some rudimentary knowledge

178

of the operating environment to test the ideas. It sufliced to iterate the following analyses

throughout the development to keep requirements to the fore.

Hazard Analysis, Risk Assessment

In the case of Flexport we must treat the hazards that exist in communication between
devices. To facilitate some of the brainstorming, we used a selection of guidewords for
communication protocols (not conforming to any particular standard), loosely based

on SHARD[FJMP94]. These are given in the Appendix B.

For this small scale, we do not formally determine the associated risks, but do give

some measures to be implemented.

Safety Integrity

The specification is built stepwise, incorporating both functionality and methods of
control for risks that arise from hazards. We anticipate that the protocol has been
designed to account for these risks, but such analysis is not indicated. Thus, for our
formal development we have to make informal judgements in deciding both what we
regard as methods of control for a given risk and what parts of the Flexport document
we consider to specify them. We indicate how we expect the protocol to provide these
methods of control to effect risk reduction, preferably risk elimination for all the risks
we may identify.

In order to show that safety integrity of the system is assured we have to use a formal
analogue, since we are developing a non-executable specification. Thus we formu-
late the safety requirements in some formal language (another subjective step), not
necessarily LOTOS, and then seek to demonstrate that this formulation inconsistent
with the specification(s). This then becomes a task of verification. Subsequently, our
formalisation can validate the definition of Flexport, possibly pointing to ambiguities,
incompleteness etc. For instance, if we identify a fault or hazard which, we believe, the
protocol, does not handle, then we shall specify it and make some recommendation

for the protocol.

6.3 Overview of the Flexport protocol

We now turn to SYS_REQS. The definition of Flexport is provided in a document
that consists of a mixture of text description, charts, tables and diagrams. It defines the
connection of a Spacelabs system (station 1) to a third party device (station 2) and consists

of 3 layers:

179

Station 1 Station 2
| | | |
Upper Level Link Upper Level Link
L1 L2

Low Level Link Low Level Link

H1 H2

Hardware Inferface (cable)

Figure 6.1: Flexport’s layered architecture

1. Hardware interface, providing a data transmission service between stations 1 and 2,

with no handshaking.

2. Low Level link interface: a connection oriented protocol with low level link control to

implement secure data transmission.

3. Upper level link interface: used to actually communicate numeric and waveform data.

We conceive the architecture as in Figure 1, where H1, H2, .1 and L2 are regarded
as Service Access Points (SAPs). Layer 1 may be viewed as corresponding to Level 1 of the
OSI reference model, with Layers 2 and 3 corresponding to Level 2.

The hardware layer specifies an asynchronous protocol, with ASCII encoding and a
full duplex transmission mode, thus somewhat different from the MIB which is bit-oriented
and half duplex. The transmission of data between the stations is in terms of packets —
given as data (called a frame) wrapped in some other bytes giving information about the
frame (page I-5,[Spa89]). The packets have to be passed down to the low level link and then
converted into characters for subsequent passing on to the other station via the hardware
interface. Thus the low level is called upon to provide services supporting the upper level’s
transmission of these packets. The low level link control may be regarded as one such service

for the upper level link.

For our applications, we restrict our attention to the Link Connection phase for
which a connection mode service is specified as an enumerated list of points, given in
Table 6.1. This phase is evidently a necessary precursor for any session to take place, and is

certainly non-trivial. Thus it is useful to analyse it, especially since rigorous treatment has

180

Link Connect
1. When trying to connect, Station 1 sends ENQ once a second.
2. When station 2 receives an ENQ, it sends DLE,X_ON.
3. When Station 1 receives DLE, it sends X_ON
4. If the character received after DLE was not X_ON then goto 1.
If the character received after ENQ is not X_ON then goto 1.
5. Station 1 sends its Link Config Packet
6. Station 2 acknowledges receipt of the Link Config Packet
7. Station 2 sends its Link Config Packet
8. Station 1 acknowledges receipt of the Link Config Packet. The two stations now
use the lowest common settings in the link config packets.

9. Station 2 starts sending its data automatically to station 1 at an appropriate

data rate (typically 1 reading per second for continuous data).

Table 6.1: Flexport Definition: Link Connection

previously been sparse. The importance of analysing this phase for medical protocols has
already been established by initial work on the MIB [CN92, NC96]. It is hoped that that
this work on a simpler protocol may provide useful information for the emerging IEEE1073
standard.

Below the list of points there is a finite sequence, also numbered, which gives a
temporal ordering of events to provide Link Establishment. This is reproduced in Table 6.2.
Such a sequence is interpreted as a trace. The events of the trace are a mixture of ASCII
codes — which we term protocol data units (PDUs) and packets (of which we use just the
one — Link Configuration). This particular trace is an example of a message sequence
chart (MSC), describing in this instance the most desirable sequence for the achievement
of link establishment. In general, MSCs are simple and intuitive means of specifying and
representing in a graphical notation the exchange of data between two or more components.
They are often used to define requirements for selective aspects of protocols, especially for
telecommunications. MSCs may also be given a formal semantics, thus providing a sound
basis for validation [LL94]. MSCs are subject to international standardisation by the ITU
[Int93, Int96].

6.3.1 Intensional and Extensional Views

Communication protocols possess two aspects: peer-to-peer protocols and inter-

level services. Peer-to-peer communication is dependent upon the consistent performance

Link Establishment:

a W N -

Station 1

ENQ -—==>
o

X_0N -—==>
o

(Link config) -—-=>
o

o

ACK
. Sequence # --==>

Message Sequence Chart

Station 2

DLE
X_ON
ACK

Sequence #

(Link config)

data transmission starts here

Table 6.2: Flexport Definition: Message Sequence Chart

181

182

of services of lower levels. Thus to aid clarity, we make in effect an initial design decision
to separate concerns by using these two distinct views to generate separate specifications
which are called intensional and extensional. According to the terms of the main frame-
work, these will require verification of mutual consistency and validation of reliability. This
motivates the provision of two specifications for the connection phase of the Low Level Link,

corresponding to two views from different levels.

1. An eztensional specification which provides a high level description of the desired

behaviour, treating lower levels as a black box;

2. An intensional specification which possesses a more detailed description of the desired

behaviour, especially services carried out in lower levels.

The use of intensional and extensional specifications is quite widespread, and there
has been work done in LOTOS for the ISO reference model [CN92]. Here we derived the
intensional specification from the main protocol, so where there is reference to ’the [main]
specification’, it is this pecification we have in mind. The extensional specification, being
much simpler, was derived from the MSC. As the MSC is just a trace, the extensional

specification needs no architectural design.

6.4 Configuration Management Plan

In this section we present some aspects of Configuration Management to indicate
how they support the formal development. Our reference source is [Whi91]. This does not
constitute a complete project: for instance, the development is the work of an individual
with periodic informal reviews as befitting a research studentship. However, it is hoped

that it does serve to give a flavour of how the framework can operate on a larger scale.

6.4.1 Classification of the items in the system

Listed below are the item types and subtypes (enumerated) and their instances
(bulleted) which are used in the project. A full project would require the delivered items

to be as complete as possible.
1. Documentation

(a) Client Definitions and other Official Documents

e Universal Flexport Protocol

183

¢ [SO 8807 LOTOS standard

¢ Fault Tree Handbook

o References to other guidelines, e.g. background to CM (Whitgift), safety
techniques (esp. DEFSTANDO00-58), formal theory, data communications

(b) Technical Reports — Overview and Results of Development

i. KUCSES Technical reports presenting overview of work in progress
(c) Safety Case

e Hazard Analyses

e I'TA (and other safety analysis)
e CM Plan (sic)

¢ RM Logs

e Tools Summary
2. Software

(a) Specifications in LOTOS text

i. ISO libraries for basic Data types
ii. intensional
iii. extensional
iv. tests
A. trace tests
B. property tests

C. conformance tests
(b) Transformations/other representations of specs
i. Transition graphs
.CR ’Common Representation’ format used in LOTOSPHERE

fe2 transition system in fc2 format (a common format for various suites of

tools)
.bcg a compact representation using BDDs.
.net an interpreted Petri Net format (generated by Caesar)
.gph finite state automaton (graph)
.m0 graph in AUTO format

184

.aut graph in ALDEBARAN format (generated by Caesar)
ii. C code
A. aid to compilation to LTS
B. executable code
iii. Pictorial representations
¢ G-LOTOS graphs

¢ State Transition graphs generated by bcg draw

We used a variety of tools on a SUN 670, running UNIX. All these and their

versions are given in Appendix C.

6.4.2 Baselines

Most of the effort for Flexport is devoted to supporting the LOTOS specifications
and how they are composed in order to model the protocol. Hence the baselines, which we
specify below, are in terms of this evolving model. They start off with a highly simplified
structure, and later branch out to two alternative refinement paths that are conceived as
milestones to aim for. Further sub-baselines are introduced to indicate changes at varying
levels of abstraction. Baselines may be regarded as phases at which new user requirements
are introduced, reflecting the cyclic nature of the design. It is important that these re-
quirements are introduced in an appropriate order so that big structural changes are not

required later on.

1. Basic structure of architecture; Link Connection using 1 place buffer, perfect channel,

no special features implemented.
2. As above except implement n—place buffer
3. Add Baud rate hunting

4. Fault Inclusion

e lossy channel
e corrupting channel

e message re-ordering channel

5. Branch to two paths

(a) Path 1

(b) Path 2

o Fault Tolerance

i. Add Flow Control

o Fault Tolerance

i. Add Flow Control

ii. Add Error Recovery

ii. Add Error Recovery

e Add Data Transmission phase

e Add Data Transmission phase

e Detail Packet Types definition

e Reify data — detail Packet types definition

185

This is illustrated in diagrammatic form in Figure 6.2 as an instantiation of fig-

ure 3.2:

C

G

G

pl denotes a relation between configurations CI

C.

)

a

C

q)

Figure 6.2: Refinement Graph of Main Baselines

The figure shows the refinement at a high level of abstraction, with C; denoting the

baselines and the p; denoting refinements between baselines. At a deeper level of granularity,

we have, e.g.. p3 is itself a sequence of successive subrefinements — the introduction into the

channel of lossiness; data corruption and message re-ordering. Similarly, p4 and p; consist

of subrefinements for the steps in paths 1 and 2 respectively.

6.4.3 Item Identification

This is the task of providing each item with a unique and meaningful name. We

choose names to indicate the baseline as well as describe its function. A naming scheme

186

could be based on the item hierarchy and have as many parts as the number of levels. Our

project is small by CM standards, so we choose names to have 2 bits plus version number:

< name > . < extension >, < version >
names include:
e flexint: flexport intensional specification
e flexext: flexport extensional specification
e flexdata: data types definition for the specifications
e stationi, station2: stations 1 and 2
e buffer: hardware channel
e unitestmsc: Unified Tester for MSC-based specification

e <specname>_t : template for <spec_name> (see section 6.5.3)
extensions include:

Jotsrc source file for LOTOS behaviour
Jotdat LOTOS DATA Types source file

Jot LOTOS specifications for LITE toolset[PvEE92] (usually derived, so built from rele-

vant sources)
Jotos LOTOS specifications for CADP toolset

.cw CCS specification for Concurrency Workbench

Version numbers are maintained for source components and also for some derived
elements, being simply the tuple of versions of the respective sources. The numbering is
a numerical ordering governed by rcs [Tic85]. Source versions are indicated as close to
the front as possible — e.g., in initial comments for a specification, and on the front page
of documentation. For derived elements, the composition may be gleaned by searching

through for the histories that are part of the included sources.

187

6.4.4 CM and Version Control

Even for a relatively small case study such as this, it is useful to keep careful
watch over the various components of the development. Hence we use aspects of version
control under rcs together with Make[Fel79], to cover the specification sources and derived
elements. We consider in detail below one main software item, the intensional specification,
flexint.lot, which is a derived item that has four source components: flexdata.lotdat,
buffer.lotsrc, stationl.lotsrc and station2.lotsrc. Each of these components is
placed under version control, so the intensional specification is also a configuration.

Version control needs the structures to be determined beforehand. Guided by the
principles of abstraction and decomposition, the baselines expressed at configuration level
may be decomposed in terms of the sequences of versions planned for each item and such
items may be similarly decomposed etc. Once a complete component structure of the whole
system has been established (so extending the list of item instances above), then one can
proceed to take the top-level baselines, identify which components are within the scope of
the various changes, e.g. ’add baud rate hunting’ affects flexint.lot which in turn affects
its component station 1, but not 2. Similarly, alternative paths will be reflected in one or
more components.

In this way, one can generate the order of construction for each item, yielding

proposed stages of development for the intensional specification as follows.

1. flexint.lot derived item

Versions are in terms of flexdata.lotdat, buffer.lotsrc, stationl.lotsrc and

station2.lotsrc

2. flexdata.lotdat

(a) Boolean and Natural numbers from mod-is.lot (supplied with LITE3.0) plus
definitions for PDU’s

(b) addition of string type (for n-place buffer)
3. buffer.lotsrc

a) l-place buffer, perfect channel

(
(b) make n-place buffer

¢) add lossiness

)
)
()
(d)

add data corruption

188

v v1l.2=v(1.1,1.1,2.1,1.1
s} () R

v1.1=v(1.1,1.1,1.1,1.1)| :v3.1:v(2.1,2.1,2.1,1.1

0.

v2.1=v(2.1,2.1,1.1,1.1)

pl denotes a relation between versions

Figure 6.3: Refinement Graph of Intensional Specification

4. stationl.lotsrc

a) simple PDU dance, no features implemented

(
(b) add baud rate hunting

Add Flow Control

(c
(

e

(e) Add packets
(f

)
)
)

d) Add Error Recovery
)
) Add Data Transmission phase
)

(g) Reify data — detail Packet types definition
5. station2.lotsrc

(a) simple PDU dance, no features implemented
(b) Add Data Transmission phase

(c) Reify data — detail Packet types definition

The version of the composite item flexint.lot can then be expressed as a tuple
flexint.lot,vx.y = v(vy, v, v3, v4), where vy denotes the version number of data types; vz the
version number of the buffer; vs the version number of stationl; v, the version number of
station2.

This can then give the refinement path indicated in Figure 6.3. In Appendix E
there are given two tables which cover in more detail the versions (planned and actual) for
the sources and some derived items.

At this level of granularity we can specify the relations we seek for the items

in the refinement trajectory. Since these items are formal, these relations express precise

189

mathematical properties (as mentioned in section ??). Thus, for p2, we need to show that
the new buffer is a generalisation. Through the compositional structure this needs analysis
of the buffer item. Version v1.2 is technically a variant, but we consider it as an alternative
path on equal footing with others. The alternative path starts by implementing baud rate
hunting. Both should converge at version vs.

Let Buff(n) denote the model of a general Buffer of capacity n. Then the re-

quirement that the the new buffer is a generalisation of the old is expressed as:

Buff(l)UZ.l equiv Buffi1.1,
where equiv denotes strong equivalence.

Similarly, replacing the simple linear trace in S1_sendENQ by a Baudrate hunting

routine should be another kind of generalisation, which we can model by trace inclusion:

Tr(Stationlysq) C Tr(Stationly;)

where for processes P and Q, T'r(P) C Tr(Q)) if and only if the set of traces of P

is contained in the set of traces of ().

In this work there is no formal procedure for approval of items which are placed
under version control. However, we specify that at the minimum, each LOTOS component
— from the definition of Data Types to a full specification of Flexport —is to be checked
for correctness of syntax and semantics. Composite items are to be "tested’ more rigorously
through additional tasks, e.g. simulation, property testing and verification according to
the respective requirements. Item statuses are awarded accordingly. In a complete project,
one could stipulate that an item may not be approved before all the risk management

requirements have been satisfied.

6.5 Overview of system construction

In this section we present a summary of the steps involved in producing the various

specifications.

6.5.1 Architectural Design of the Intensional Specification

The LOTOS specifications have architecture corresponding to Figure 6.1 and are
built in modular fashion, having three components, corresponding to the two stations plus

the physical layer. The communication process is modelled in terms of synchronisation at

190

gates— h1l, h2, 11 and [2 — connecting adjacent layers; actions are instantaneous occurrences,
consisting precisely of these gates with the offering of values, plus a few other special
events. The level of interaction between components is governed by the parallel operator ||,
which specifies the set of gates for which actions have to be mutually agreed; independent
behaviour is modelled by interleaving using the ||| operator. The specification thus has

structure given by:

(Stationil[h1,11] |I| Station2[h2,12])
| [h1,h2] |
Duplex_chan[hl, h2]

where Duplex_chan[h1,h2] denotes a call to a process that models the behavious of the
buffer.

For each station, we distinguish between two main phases of the Link Connect
and Data Transmission, specifying that the successful completion of the former enables the
latter to go ahead (denoted by the enable operator *>>’). Thus, e.g., Station 1 has process

definition:

process Stationl[h1,11] : noexit :=
S1_Connect[h1,11] >> Si_DataTransmit[hi,11]

endproc (* Stationl *)

Similarly, the link connection is itself can be viewed as composed of 3 subphases

and specified as:
S1_SendENQ[h1,11] >> S1_TestX_0On[h1,11] >> S1_SendLCPack[h1,11]
for Station 1, and
S2_AwaitENQ[h2,12] >> S2_TestX_0n[h2,12] >> S2_SendLCPack[h2,12]

for Station 2.

Once the connection is established, we model repeated data transmission as simply

as possible, just as a repeated action at the gates [1 and [2.

191

6.5.2 Behaviour

To model behaviour, we introduce primitives, chosen to reflect the view that data
is identified as sent and received to/from a given level, as indicated in the MSC. All ’sends’
indicate a transmission downwards, whilst all ’receives’ indicate transmission upwards.

LOTOS has no built in data types — these have to be constructed, though there is
available as part of the ISO standard a library of basic types (such as Booleans and Natural
Numbers) and these are supplied with the distribution of most tools. We made some use
of these. For the specification we defined PDUs and packets to correspond to the ASCII
codes and packets used in the Link Connection of the protocol. These were implemented
in LOTOS by using parameterised actions of the form glsend(v) or g'receive(v) where g is
a gate, and the [send/|receive(v) is some parameterised value. Hence, e.g., h1!send(ENQ)
denotes the sending by Station 1 of the PDU "ENQ’ at the SAP ’h1’ down to the physical
layer.

As an example, the S1_TestX_0N[h1,11] fragment below (from version 1.1 of
stationi.lotsrc) tests for the receipt of the Transmission On indication X_ON from Station

2:

process S1_TestX_0N[h1,11] : exit :=

h1!send(X_ON);
(choice x:PDU []
hi'receive(x); ([x eq X_ON] -> exit
[
[x ne X_ON] -> Si_connect[h1,11])

endproc (* S1_TestX_0ON *)

During the connection phase for these specifications, the upper level link’s only
involvement is in the sending and receiving of the Link Configuration Packets. Hence, the
extensional specification’s behaviour is a short trace.

Regarding the hardware interface for the intensional specification, the full duplex

mode is modelled using interleaving of two simplex channels.

192

6.5.3 The use of a template for the intensional specification

Component source items are glued together to form a valid LOTOS specification
through the use of a template which is pre-processed using a macro processor — we employed
m4, which is commonly available as part of distributions of UNIX. Among the templates
was one to generate the intensional specification, which ’included’ the data types definition,

buffer definition, plus definitions for each of the stations, given as follows:

(**)

(x *)
(* LOTOS intensional specification for *)
(¥ Flexport Protocol Lower Level Link Layer *)
(x *)

(**)

(x $History$ *)

(* $Log: flexint_t.lot,v §

Revision 2.1 1997/04/23 11:56:31 cs_s447
This version supports Baud rate hunting
with two extra gates ’baud’ and ’tick’

#

#

#

Revision 1.2 1997/04/23 11:53:40 cs_s447
library call for data types omitted
#
#
#
#

Revision 1.1 1997/04/23 11:51:34 cs_s447
Initial revision

*)
specification Flexport [h1,h2,11,12,baud,tick] : noexit
include(flexdata.lotdat)

behaviour

(
(Stationilhi,1l1,baud,tick] ||| Station2[h2,12])
| [h1,h2] |
(Duplex_chan[hl,h2])
)

where
include(buffer.lotsrc)
include(stationl.lotsrc)

include(station2.lotsrc)

endspec

193

6.5.4 Refinement and Verification

The refinement is carried out within the procedure FTBuild and is driven mainly
by two aspects: the target baselines and the outcome of ongoing safety analysis. Approaches
to refinement include analysing and implementing transformations such as process refine-
ment and action refinement. These bring with them obligations: certain specific tasks of
verification and validation have to be iterated for new versions. We summarise here the
approaches to verification for Flexport — the validation is discussed in the next sections.

In this project we use side by side two approaches to the formal verification. These
approaches may be called ’internal’ and ’external’. To verify consistency by an internal
approach, we seek to show the symmetric relation, observation equivalence, and also the
asymmetric relation, the reduction preorder through the generation and comparison of
the expanded trees for the relevant specifications. Apart from performing model-checking
directly on each specification in turn, the ’external’ approach of testing may be used as
described in the previous chapter. For this, we perform simulation of test compositions,

including most notably those involving unified testers.

We aimed to use a selection of tools with the emphasis on minimal intervention,
which we regard as an important factor that would receive more favourable consideration
from industry, as argued in section 2.6.3. A summary of the tools and their versions is
given in Appendix C. The specifications were built mainly using the LITE toolset, with
simulation performed in SMILE[EW93]. For validating properties in the modal mu-calculus,
we used Ceesar[FGMT92] to translate the LOTOS specification into a corresponding LTS,
saved as an automaton and then translated to FC2, a format designed for file exchange
between different tools; after manual editing of action names, this was imported into the

Concurrency Workbench[CPS89] where formulae in the modal mu-calculus were validated.

In the next two sections we present two iterations of the procedure FTBuild
including the derivation of safety requirements, their formulation as properties and their

validation; the tasks of verification are also covered.

6.6 Applying FTBuild : First Iteration

In the first specification we wished only to check the integrity of the "PDU dance’

which is designed to establish link connection. In order to make things as simple as possible,

194

No response from
IV pump to instructions
issued at console

‘ g\ ‘
Fault in Fault in
Device Interface PUMpP
— I ‘
Logical Fault Physical Fault
&
L
Fault in Fault in
Link Connection Data Transmission
Phase Phase

[

Dd’ro Transmission
phase not reached

Figure 6.4: Fault Tree for system (ICU)

our initial (intensional) specification, S, say, omitted all the special features. Further, we
assumed a one place buffer for each of the channels — once a low level link sends a character
down the physical layer, then it cannot send another until the character has been received

by the low level link of the other station.

6.6.1 Fault Tree Construction

We constructed an initial informal tree to show how the communication system is
a component of the overall system. This is given in Figure 6.4.

For the protocol, we choose to start our formalisation by considering the node "Data
Transmission phase not reached’. Hence, a sample iteration of the procedure FTBuild

proceeds as follows.

1. Select the event F: Data Transmission Phase not reached’

2. Event causes are:

e Fy: 'Deadlock [in link connection stage]’

e Fy: 'Livelock [in link connection stage]’

3. Formalise F as the atomic proposition "DTNR’

195

|
E

Data Transmission
phase not reached

2

o0 E

Deadlock Livelock

Figure 6.5: The extension to the ICU Fault Tree resulting from the first iteration

4. Fy and F; are alternative causes which we regard as part of a generalisation, thus we

have a generalisation-OR gate.

5. The gate is formalised as GO Ry, which is given as: DT NR <= F{V Fs.

The initial formalised fault tree has, like the initial specification, a very simple repre-

sentation. It is given in Figure 6.5, and has as leaf nodes ’Livelock’ and "Deadlock’.

6.6.2 Requirements Derivation

We perform step 6 of FTBuild :

1. We choose to omit the formal analysis of the tree

2. The overall consideration is to provide assurance that any execution of the LOTOS
specification carries out desired behaviour in a safe, reliable and efficient manner. In

response to the events, Iy and Fs, we elicit the following requirements:

(a) The specification should be free from deadlock — i.e. data may always be trans-

mitted;

(b) The link connection should be free from livelock — e.g. there should be no infinite

loops during this phase.

(¢) The link is (eventually) established after a finite number of actions.

The first two requirements are safety properties, whilst the third, a strengthening of

the second requirement, is a strong fairness property (so 2c implies 2b).

We may formulate requirement 2c implicitly by simply stating that some event(s)

in the Data Transmission phase should eventually happen or, some other property

196

should eventually hold. More specifically we could show the (weak) condition that
for both stations 1 and 2, some event in the Data Transmission phase, but not in
the Link Connection phase, eventually occurs. A stronger requirement is to show
explicitly how the link is actually established — namely, that all execution sequences
(of the intensional specification) contain an initial finite subsequence which satisfies
the protocol. Accordingly, we may look to show that all execution sequences possess
a temporal ordering of actions conforming to the MSC or to some satisfactory trace
based on the MSC. As this shows precisely that link connection is established reliably,
our only further concern as regards validation is to ensure that the specification allows

easy computation.
The safety requirements and their formalisation are derived as follows:
¢ Gate Requirements We wish to preserve the gate condition, hence o(GOR;) :=
DINR < EV Ey

¢ Event Requirements

- Ell
Informal: ’Specification should be free from deadlock’. This is a safety
condition
Formalisation:
vZ.< —>tt AN [-]Z. (6.1)
- Ezl

Informal: We treat the third of the requirements listed above: 'Link con-
nection should be free from livelock’ which we rephrase as ’link connection
should established in a finite number of steps’. We propose two alternative

formulations which indicate an open-ended problem-solving approach:

(D

For both stations it is the case that eventually they are both able to
perform actions that are only in the data transmission phase.

If we denote by s the initial state of 57, then we require:

Formulation of I:

so = pX.(< S >ttt A[=S7]EE) V(< — > tt A [—]X), (6.2)

197

where

St = {hllsend(DAT), hllreceive(DAT), h2!send(DAT), h2!receive(DAT)}

(1I)
51 should satisfy some testing relation <pges (such as the testing

or reduction preorder) with an MSC-based specification that makes
explicit a set of desirable traces.

Formulation of II:

91 <Riest MSC Base (6.3)

6.6.3 Incorporation of Requirements

For step 6¢), we check that the requirements hold for the model by selecting the
second conformance relation (definition 4.4.2).

We instantiated the values as follows:

F'={F}; hence F = F

o {yrax(F)is the tree given in Figure 6.5. (We could have this as the larger tree).
o d(tmax(E)) = ft(E)

o ((T) = gates(T)

e o and € are defined above; e(g) = ()

We take M to be the LTS corresponding to 57 together with its valuation V.

The conformance relation becomes:

Mconf 5y(F',6,(,¢€) if

sobFm N A ([[U(@H/\lﬁ(@) (6.4)

FE(S(ft(E))gGgates(F) ecyg

which reduces simply to

198

(so Fm (X(< ST >ttt A[=97]EE) V(<K = >ttt A [=]X))A(vZ. < = > tt A [-]%))

V91 <pea MSC Base (6.5)

where S7 = {h1lsend(DAT), hl'recetve(DAT), h2'send(DAT'), h2!receive(DAT')}.

6.6.4 Derivation of the Unified Tester

We describe the derivation of the unified tester (given in Appendix D.2) to test
the intensional specification for robust conformance. In this instance the intensional speci-
fication is TUT.

We choose the reference specification 5, to which TUT must conform is the MSC
given in Table 6.2. Then we extend the MSC with all other viable connection sequences
resulting from an interpretation of Table 6.1. This leads to the more elaborate specification,
given in Appendix B as TestMSC. We now require that JUT conforms robustly to Test MSC,

which is to act as the source 5 for the canonical tester.

6.6.4.1 Construction of the Tester

As TestMSC has finite behaviour and a tree structure, it is an example of the special
case detailed in section ??. Thus we may construct it as a LOTOS process in the manner
described there.

First of all, to enable exhaustive testing the data types, we define a super data type
"DataSet’ which includes a complete list of equations that enable comparisons between every
parameterised action, whether send’s or receive’s of packets and PDU’s. The process body
itself consists of a tree of calls to other processes - TestEvent and TestEventinChoice.
The main structure of the tree is the same as that for TestMSC.

Each iteration of TestEvent receives as parameters the set of events possible at a
particular node and proceeds to offer all these events. We now explain the process in more

detail:

1. For example, corresponding to the first event in TestMSC, which is h1!send (ENQ), the
first call is:

TestEvent[h1,h2,11,12,fail_data,fail_gate,fail_both] (send(ENQ))

199

where TestEvent reconstructs the acceptable event h1!send (ENQ) from the first gate
parameter and the data item enclosed in parenthesis. Thus the variable ’g’ is bound

to h1 and 'z’ is bound to send(ENQ).

In the body of Test Event, the first part of the choice expression offers h1!send (ENQ)
; exit, plus all the other events in the label set that are possible at the other gates.
If TUT synchronises on any of these, then the fail_gate action is performed before

the process terminates.

The second part of the choice expression does two further tests for more diagnostics:
first events of the form hl!zz are offered, where zz is not equal to send(ENQ). Any
synchronisation here will give rise to a failed termination via fail data. Finally, the
last three terms offer events where neither the gate nor data match h1!send(ENQ),

whence a failed termination via fail_both.

2. If TUT synchronises on h1!send(ENQ), then this process is completed via exit and
the next action to be interpreted is the next one in the body of the main process. The
procedure is now repeated for the next action in TestMSC, i.e. for h2!receive (ENQ)
and then for subsequent events. When there is a choice in TestMSC, one is given in
the unified tester together with the appropriate internal action prefixes followed by
calls to TestEventinChoice, which is like TestEvent except that this has two set

parameters.
For example in TestMSC there is a choice between the event hi'!'receive(ACK) and

12!'send(LC Packet) which yields in the tester:

TestEventinChoice[[h1,h2,11,11,fail_data,fail_gate,fail_both] (receive(AC
K),Insert(send(LCPacket), Insert_1(receive(ACK),{})))

This tests for matches with the action at ’h1’, but note the absence of the gate ’12°.
This ensures that we do not get false failure indications — the tests for 12" with respect

to its acceptable data are given in the call to TestEventinChoice further down the

page.

3. Continue in this manner until reaching the end of TestMSC and finish each branch of

the unified tester with success;stop to denote successful termination.

6.6.5 Results

Property conformance (equation 6.5) was shown in various ways through simula-

tion, testing and property checking. The specifications were initially prepared using the

200

LITE toolset, being simulated in SMILE, which allows the step-by-step unfolding of the be-
haviour defined by a LOTOS expression. We chose reduction as the testing relation for the
requirement expressed in equation 6.3 and constructed the corresponding unified tester —
given in Appendix D.2. In this case, the specifications were small enough such that the tools
were able to cope and provide conclusive answers. The results for the list of requirements

are given in more detail below:

1. absence of deadlock Simulation of the intensional specification under SMILE reveals
a small tree with few branches, whose simplicity is due to the modelling of the du-

plex channel by using two one place buffers. There were no stop indications, so no

deadlock.

2. (& 3.) reliable link establishment after a finite number of actions We used the MSC
as the basis for deriving a LOTOS specification UnitestMSc that was to be used as a
tester. The tester took account of behaviour not expressed in the MSC, yet would be
acceptable for a system operating according to Flexport. This was a matter of just

incorporating alternative interleavings of events in the link connection phase of the

MSC.

We were able to prove that the behaviour of the intensional specification was a reduc-
tion of the MSC-based specification using robust conformance testing. Fvery execu-
tion of the test composition below terminates successfully, showing that the intensional

specification is a reduction of the MSC-based specification,

UnifiedTesterMSCBase[h1,h2,11,12,successMSC,data_failure,gate_failure,
twofold_failurel
[[hi1,h2,11,12] |
FlexInt[h1,h2,11,12]

Furthermore, following the procedure for verification, we were able to compile the
two specifications into LTS representations using CASAR and CASAR.ADT. We
then used ALDEBARAN to compare the two LTS representations for observation
equivalence. The output from ALDEBARAN indicated that the intensional and MSC-
based specifications were indeed observation equivalent, a very strong result (which

did not hold in the subsequent refinement).

201

For the verification of internal consistency, we showed that the intensional spec-
ification, with actions at gates [1 and [2 hidden, was observationally equivalent to the
extensional specification. This was done using CAESAR and CASAR.ADT, for which the
specifications required some modification, largely the addition of extra comments in the
definition of data types which are interpreted for compilation into a C program represen-
tation. We also had to use an alternative definition of the data type for Natural numbers,
which was available in a library as part of CADP as there is an error in the ISO library
(which is actually picked up by SMILE as well). Some other restrictions are reported in
section 6.8.4.

Having carried out these minor modifications, we were able to compile the inten-
sional and extensional specifications into LTS representations using CASAR and CESAR.ADT.
We then invoked ALDEBARAN to compare the two LTS representations for observation
equivalence, and it duly indicated that the intensional and extensional specifications were

indeed consistent.

We also applied robust conformance testing, deriving a tester from the extensional
specification and composing it in parallel with the intensional specification, whose actions

at the physical layer were hidden:

Tester_Extensional[h1,h2,11,12,success,data_failure,gate_failure,
twofold_failurel
[[11,12]]

(hide h1,h2 in Intensionallh1,h2,11,12])

Every execution of this test terminates successfully, showing that the intensional
specification with gates hy and hy hidden is a reduction of the extensional specification, i.e.

the two specifications are consistent.

6.7 Applying FTBuild : Second Iteration

The second iteration was engaged as a consequence of completing the 1st iteration
by repeating step 6c¢ for an initial refinement (53) of S7. This particular refinement was to
include baud rate hunting, an example of process refinement. The model that was built is
given in Appendix D. We describe below how performing a number of procedures for safety

analysis contributed to its construction.

202

6.7.1 Safety Analysis of Specification No. 2

For 55, the second version of the intensional specification, we implemented *Baud
rate hunting’, the recursive process by which station 1 periodically sends an "ENQ’ until
it receives a recognizeable 'DLE’ in response. We assumed initially that Station 2 was
automatically transmitting at the correct rate. Thus we were only testing additionally the

protocol’s ability to handle delays in response.

It was somewhat of a surprise then that this modest refinement gave rise not only
to state explosion (which is exacerbated by the protocol’s duplex mode of operation), but
also other problems — simulation of an initial refinement revealing various cases of deadlock;
and further exploration revealed livelock. This prompted reexamination of the specification

to consider:

1. Is the model a valid interpretation of the system definition of the protocol? If not,

what are the inconsistencies in interpretation?

2. If the model is valid and there are still problems, then is the system adequate?

Initially, we assumed the design to be adequate, so we set about trying to determine
the faults in the specification. In the examination of the simulation tree of the first versions
that included the baud rate hunting process, we identified a potential weakness in the two
specifications of station components in their ability to allow faithfully the duplex mode of
transmission. This mode allows for a large number of permutations in link connection, for
instance, station 2 can receive station 1’s X_ON between sending out its DLE and X_ON
(as indicated in the MSC).

It was revealed that the model omitted some behaviour which we might expect
(specifically, the constant ability to receive PDUs). Thus, the specifications were modifed
by squeezing into both stations 1 and 2 the ability to receive data in each phase, and
we interpreted the statement “when station X receives Data Y” by an iterative waiting
process. This enabled the removal of some instances of deadlock identified earlier, but left
many others.

At this stage, we proceeded to use F'TA to try to prompt the discovery of further
information about what had gone wrong. We analysed the specification so that the nodes
livelock” and ’deadlock’ could be expanded and the faults isolated. We found that the
analysis became specific to the way the model is constructed, making use of the structure

and style of the specification. In this instance, we sought to locate where problems occurred

203

within this structure and then to specify as safety requirements that these problems do not
occur. Appropriate modifications would subsequently be made.

The procedure was enacted as follows:
1. Specification Structure:

(a) Specification structured as 3 components — 2 stations and channel.

(b) Component structure for each station (as detailed in section 6.5.1): the link
connection can be characterised as having three distinct phases (we abbreviate

Station 1 by St1 and Station 2 by St2).

(Station 1) Baud Rate Hunting >> Test X_ON >> Send Link Configuration
Data

(Station 2) Receive ENQ >> Test X_ON >> Send Link Configuration Data

2. Fault Tree elaboration and analysis

Further analysis of the simulation tree revealed that the main problem that was oc-
curring was the potential for one of the stations to enter a more advanced phase of
link connection than the other through a kind of mistiming which we call phase mis-
match. Hence we identify the following faults which can give rise to both deadlock

and livelock:

(a) Station 1 never reaches phase 3 OR Station 2 never reaches phase 3

(b) There is a trace which leads to a state in which Station 1 (Station 2) is in phases
1 or 2 whilst Station 2 (Station 1) is in phase 3

These give rise to the fault tree in Figure 6.6.

Fault (b) revealed some limitations in the guidelines for fault tree construction as
expounded in [VGHRRS1], particularly the sections V.1 — V.7. ’Station 1 is in phase 1 or 2’
whilst ’Station 2 is in phase 3’ is a kind of conjunction and at first glance the "AND’ gate
may seem appropriate, bearing in mind that these events are dependent. However, neither
of these events are faults in themselves, so there is no point in investigating them in isolation.
The fault lies entirely in the nature of the interaction of the stations as constrained by the

communications channel.

204

|

E Data Transmission
phase not reached

e

I
E] Deadlock Livelock E2
[|
defﬁdlock deadlock
within due tfo
component interaction

Station 1 Station 2 Phase
Deadlocks Deadlocks mismatch
Buffer
Deadlocks
[|
st'n 1 in SendENQ st’'n 2 in AwaitENQ
st'n 2 in SendLCP st’'n 1 in sendLCP

Figure 6.6: Extension to the ICU Fault Tree resulting from the second iteration

The Fault Tree Handbook appears to omit discussion of such interaction between
events at the same level — the inter-relationships treated are consequences of individual
effects, not of several events. This is amplified in the restrictive "immediate cause concept”,
which forces complex behaviour to be squashed into single events.

As the handbook seems much more geared to successively working back to indi-
vidual failure mechanisms, such analysis is not well supported and we have left these as

leaf nodes. For further analysis, we explored the fault’s cause by using the simulation tool,

SMILE.

6.7.2 Safety Requirements

A larger number of requirements can be generated as a result of the new events
generated in the fault tree. For the new leaf nodes it appears desirable to have a state-
based requirement, which in the case of LOTOS would be a means to specify requirements
in terms of the processes that have been identified. Unfortunately it is not generally possible
to formulate these directly in a temporal logic such as the modal mu-calculus. Instead, we
have to use formulations in terms of event sequences and their temporal ordering, making
use of features such as the exclusive occurrence of certain events in the respective phases.

The requirements were:

205

o the negation of conditions 2a, 2b above.

¢ 'Data transmission should occur within 3 ticks’. (A special tick’ action introduced).

(We can also phrase this as: ’we can have at most three occurrences of station 1

sending an 'ENQ’.)

6.7.3 Modifications, Further Analysis and Results

deadlock/livelock for specs that are obs equ etc...

Simulating the Baud rate hunting procedure in the light of these requirements
revealed that when station 1 changed its baud rate, it was possible to reach a state in which
a ’send’ could not be followed by a ’receive’. The following modifications were then tried

to fulfil the requirements:

1. Baud rate hunting procedure amended to allow for receives by Station 1 at any time

after the initial hl!send(ENQ).

2. The procedure TestX_ON for Station 2 amended to allow a second chance for the
receipt of Station 1’s X_ON before returning to the start.

Despite the amendments, the problem of phase mismatch was not solved. The
resulting intensional specification (given in Appendix D), which implements the first mod-

ification only, admits the following sequence that leads to deadlock:

baud!9600;
hi'send (ENQ);
h2!receive (ENQ);
h2!send(DLE) ;
tick; baud!9600;

(* a second elapses, so station 1 sends another ’ENQ’ *)

h1'send(ENQ);
h2'receive(ENQ);

(% therefore, character received after ENQ is ENQ, not X_ON x*)

(* so station 2 goes back to await ENQ, but according to *)

206

(* the protocol it must first send an X_0ON ... *)

hil!'receive(DLE);
h2!'send (X_0ON) ;
hi'send(X_0ON);
hil!'receive(DLE);
h2!receive (X_0N)

(¥ so for station 1, the character received after ’DLE’ is x*)

(* X_ON, therefore proceed with the rest of link connection *)

Phase mismatch has occurred when Station 1 has sent a superfluous 'ENQ’ which
is picked up by station 2 when it expects an X_ON (which may well be coming immediately
after).

However, this still left instances of livelock, occurring especially when Station 1
enters its third and final phase in link connection, whilst Station 2 lags behind in an earlier
phase. In certain circumstances, we would expect livelock: for instance, if we had allowed
an infinite buffer; but here we used a duplex buffer which had capacity of just 1 in each
direction. Increasing the capacity of the buffer did not help, generally only serving to allow
the channel to be filled with redundant PDU’s before reaching the same kind of deadlock.

At this stage, we considered that we had now implemented the protocol as best
we could in LOTOS. We then had to consider the suitability of LOTOS. Here we felt
that LOTOS was not the cause of the problems: sometimes a criticism is made that the
interleaving semantics of LOTOS can give rise to counterintuitive event sequences, but these
do not appear here owing to the synchronisation of both stations with the duplex channel.
Also, although the current LOTOS standard has no explicit mechanism for handling time,
we feel our simple denotation of the passing of time — through the use of a special "tick’
action — was adequate. This action was only needed to represent a simple mechanism that
prompts the Baud rate hunting process to enter the next stage. There are timed extensions
of LOTOS (see e.g. [BL92]) which may be valuable if we are to examine more timing
aspects. However, we feel that in this case, the standard (untimed) LOTOS sufficed.

This leaves us having to consider fault inclusion and its associated risk. Looking at
the trace leading to deadlock indicates that this eventuality could be unlikely for it requires
that it takes about a second or longer for Station 1 to receive a response to its 'ENQ’ given

that Station 2 receives it fine and sends its response immediately. However, a more realistic

207

assessment of the probabilities and the potential severity can only be determined by those
with suitable experience.

In summary, as the language seemed to capture the behaviour required, we have
concluded that the protocol could be better defined. We followed the protocol in stipulating
that when station 2 receives an ENQ, it really does send DLE followed by X_ON even though
it may not have received an X_ON from station 1. We regard this as contributing to the
problem in mutual co-ordination and believe that it is a fault in the protocol.

Having reached the conclusion that the protocol contains a fault, then we suggest
a method of control for this part of the protocol. To respond to the problem of phase
mismatch, this method of control imposes an added constraint on when the protocol can
return back to the beginning to start all over again

It is implemented in Station 2 as an extension to the process S2_TestX_0ON. The
extension traps repeat occurrences of Station 1’s sending of the "TENQ’ that may be caused
through lags in communication and puts Station 2 into a new process, S2_AwaitX_0N, where
it still waits for the "X_ON’ if it receives further ENQ’s; otherwise it duly returns to the
beginning to start all over again

This is modelled as:

process S2_TestX_0N [h2,12]: exit :=

choice y2:PDU []
h2!'receive(y2); h2!'send(X_0N);

(
[y2 eq X_ON] -> S2_SendLCPack[h2,12]
(]
[y2 eq ENQ] -> S2_AwaitX_ON[h2,12]
(]
[(y2 ne X_ON) and (y2 ne ENQ)] -> S2_Connect[h2,12]
)
where

process S2_AwaitX_0ON[h2,12] (yy:PDU) : exit :=

choice y3: PDU []
h2!'receive(y3);
(

208

[y3 eq X_ON] -> S2_SendLCPack[h2,12]

(]

[y3 eq ENQ] -> S2_AwaitX_0N[h2,12]

(]

[(y3 ne X_ON) and (y3 ne ENQ)] -> S2_Connect[h2,12]
)

endproc (* S2_AwaitX_0N *)

endproc (* S2_TestX_ON *)

6.8 Experiences in development

In this section we present more general comments about experiences in the devel-

opment.

6.8.1 Building of the fault trees

We found that the task of building the fault trees for Flexport encouraged us
to address faults in a more systematic and focused manner. One they were recorded in
the fault tree, then the safety analysis was well anchored. After a while, the nature of
interplay became evident between the building of the fault tree and the analysis of the
model (particularly its simulation), with one activity leading onto the other.

Although we did not make explicit the semantics for the fault trees used in the
FTA methodology, we found effective the use of temporal logic. Note that we derived
only one gate requirement, which was actually superfluous to the combination of the event
requirements. Also, we did not consider the analysis of the formalised tree itself. Other

examples are required to explore these areas.

6.8.2 Refinement and Validation

Validating the specifications during the refinement of the two stations proved okay
at first but then became problematic. For the properties, the specifications were simple
enough to allow instead a verification approach where all the desired properties are en-
capsulated in a specially defined LOTOS specification (MSCBase). However, subsequent

refinements suffered from state explosion due largely to the full duplex transmission mode:

209

running SMILE for 24 hours (on a SUN 670MP with few other processes running) was
only able to expand the simulation tree to a depth of 30 (amounting to some 10,000 tran-
sitions). Hence, even the use of temporal logic would prove less fruitful in view of this lack
of completeness.

The initial versions of station 1 and 2 do not cater for either station receiving
unexpected data - i.e. faults are not included. These should be considered for further
refinements. The incorporation of this extra behaviour means that extra traces must be
possible, so the reduction preorder will fail since trace inclusion will not hold. In this

instance, the extension relation may be more suitable.

6.8.3 On the use of Configuration Management

CM proved generally supportive, encouraging a disciplined approach to the project.
It was particularly useful in analysing where faults were located since the use of versions
and component structure allowed fault identification to be finely tuned. However, we were
only able to complete half of the intended baselines. The versions that were actually built
were fairly close to those planned, though in the event some baselines required sub baselines
due to limitations with the tools which could only have been anticipated with some prior

knowledge or experience of them.

6.8.4 On the Use of Tools

1. From the outset it was the aim to make use of various toolsets for the specification
and analysis of the protocol, especially LITE, CADP and CWB. It appears that
none of these were explicitly designed to be integrated with each other. The initial
toolset used was LITE to check syntax and semantics (via TOPO) and then perform
simulation (SMILE) of the initial intensional specification. However, on introducing
the extensional specification and/or refinements, one of CADP or CWB would have

to be invoked to check consistency.

2. For using CADP, the first modifications required were for DATA types: extra com-
ments of certain types to facilitate compilation under Casar.adt. Since the program
was written in ’C’, a technical drawback was revealed: the failure to support overload-
ing of data types. Thus the send/receive equations were not supported. Fortunately,
the design of the specifications means that the equations need only be defined on the
parameterised bit of these, i.e. the PDU’s and Packets. The equations for sends and

receives were simply dropped.

210

Having made the above changes, a constraint of Casar was evident. The first struc-
tural change of the intensional specification concerned the replacement of sequences
of >> (enables operator) since Casar does not allow "recursive instantiation of pro-
cesses to the left of >>). The error messages enabled the cause of the problem to be
isolated to the station 1 and station 2 components. This was resolved immediately

using a CPT that preserved observation equivalence.

3. CM under rcs forced closer integration of the toolsets: in order to show that versions
were derived from other versions, data types had to be isolated as a component since

LITE and CADP have different interpretations for loading libraries, e.g. given

library
foo

endlib

LITE3.0 looks for a data type foo in one of the library files with ’.lot’ extension, or
some other library file specified by the user, whereas CADP looks for a file foo.1ib
which defines the data types, perhaps with nested calls to other libraries.

Both toolsets had available in a single file the data types defined for ISO8807. How-
ever, they won’t work with Caesar and Casar.adt since the definitions make use of
non-formal sort and operation actualization. Hence, CADP comes with its own modi-

fied versions, extensions and additions - the collection has a particularly wide selection.

The LITE version works generally OK with the ISO8807, though the TOPO compiler

recognises some problems, e.g. the NaturalNumbers definition gives:

Warning: operation 0:11 not declared correctly

Thus, for compatibility, one library was created with all datatypes defined and ’in-

cluded’ using the UNIX macro preprocessor m4. This was in effect a replacement.

4. m4 has a number of reserved words which are interpreted as macros, including ’include’,

‘len’(!) If the specifications contain any of these, then this will cause problems.

5. (tests)

Note that the tests depend upon overloading of data types, so we cannot use Caesar
(and so need not cater especially for its C compiler). However, we did make use of

the library that comes with CADP, especially for the definition of Type 'Natural’ (in

211

flexdata.lotdat v1.2 and above), though the label Nat was replaced by Natl since
the LITE toolset reads in data type definitions from a specified library (MOD-IS in

our case) which leads to clashes.

6.9 Observations and Conclusions

We have shown that the framework with its various procedures is useful for the
development of an industrial safety-critical case study, a medical communications protocol.
It has shown that common software engineering ’production’ methods are readily applicable
to mathematical objects, and highlights naturally many of the issues relating to the appli-
cation of formal methods. One of the most important aspects has been the demonstration
that safety-related properties really can and do have a system basis. However, this work is
in its infancy — the methodology needs to be tested out on a wide range of examples; and the
theory for relating requirements and models needs enhancing in the context of refinement.

It took a lot of effort to set up the methodology, especially the CM, but this was
helpful in delineating the various tasks. For instance, the use of version control facilitated
comparisons between various items — specifications of both model behaviour and of proper-
ties. Further, this approach becomes more attractive in light of the fact that the framework
was not devised until the specifications had been started in a less structured manner, and
that for most of the duration of the project, the methodology was being refined and theory

enhanced.

As expected, LOTOS proved generally suitable for formally specifying the proto-
col, and we were able to specify quite easily the intensional and extensional specifications,
including some simple timing aspects in the baud rate hunting. The success of the procedure
is largely dependent upon the proof techniques for verification and validation.

The first approach we employed is based on the theory of testing discussed in
Chapter 5. This has the merit of having already established ISO guidelines for commu-
nication systems. We were able to take advantage of the ability of LOTOS to implement
tests as a single composition of (LOTOS) processes. As such, this opened up the use of all
LOTOS analysis techniques, including the use of simulation tools.

As our second approach, we translated the LOTOS specifications into Labelled
Transition Systems and could then select between a number of relations for verification. We
chose observation equivalence, which is stronger than any testing relation. The procedure is
just a matter of issuing a few commands at a command line prompt which, compared with

generating a test and then simulating a test composition, is easier to perform and reduces the

212

risk of human error. However, the trade-off is that the non-interactive nature of checking
a bisimulation by a tool means that feedback is limited, sometimes to just a "Yes’/’No’
answer. To establish further information is tricky since it requires the comparative analysis
of two separately evolving specifications.

For the early versions, we were able to carry out these tasks without much effort:
for instance, the initial versions of these specifications were shown to be observationally
equivalent. However, computational resources were insufficient when we refined the inten-
sional specification to account for baud rate hunting. Also, for a given model which has
a buffer of any size, it was observed that as the buffer capacity increases, many deadlocks
would occur further down the simulation tree. In view of the burgeoning complexity, such
deadlock became more difficult to spot, indicating the need for better techniques to handle

complexity.

It was found that the task of following the FTBuild procedure facilitates and
prompts analysis, particularly a more complete consideration of hazards. It is initially
quite laborious, but worthwhile; we feel it will become more straightforward with practice
and that it should then be relatively easy to provide automated support, if only in the form
of a menu driven routine that prompts a complete following of FTBuild, thereby releasing
the burden of recalling what is the next step.

Regarding the safety analysis, even for our simple examples, it is evident that
determining where a model has failed a requirement is not always straightforward. In
order to be able to develop a fault tree in a helpful manner, it becomes important to
have a well-structured specification in order to isolate causes of problems. We did not use
risk management owing to lack of time. However, in Appendix G it is shown how risk

management could record some of the information that is generated.

Regarding the protocol itself, the document appeared to contain some very ele-
mentary mistakes, most of which should have been spotted in an informal examination — for
instance, there is a reference in page 1-3 to Stationl sending 'DLE’ again. We assume that
this is a misprint and should read ’ENQ’. This and other suspected errors are summarised
in Appendix F.

Another general aspect was that the document was minimally prescriptive, so open
to great amount of interpretation. It became manifest that many specifications could have
been built that are arguably valid with respect to the document, but which have greatly
differing behaviour. Also of concern was some ambiguity: particularly confusing is the

definition of Link Connect (page 1-2), where there is the placing in one table of the

213

independent behaviours of the two stations, compounded by the loose use of actions.

A more serious problem appears to exist in the design, leading to deadlock — as
detailed in section 6.7.1, there is the potential for one of the stations to enter a more
advanced phase of link connection than the other through a kind of mismatch in timing.
This fault was not resolved, so any safety case using our specifications would have this as a

weakness whose likelihood and severity would have to be estimated.

Throughout, we have made considerable use of a variety of tools, especially some
of those in the LITE and CADP collections. It was found that when employed together they
were invaluable in the analyses, though some manipulation of specifications was required to

enable this.

214

Chapter 7

Conclusions

7.1 Summary of Contribution

We have presented in this thesis a new integrated approach to the development of
formal models for safety-critical systems. The theme of integration has operated at several
levels: at the discipline level, we have set formal methods within the context of systems
engineering, supported by software management; at the methodology level, we have brought
together in the procedure FTBuild the tasks of safety analysis and model refinement; and
at the theoretical level, we have enhanced formal testing by describing how the Experimental
System of Hennessy and de Nicola fits inside the wider Observation framework that was
developed by the Lotosphere Consortium, and by producing a new canonical tester for the
reduction preorder. Furthermore, this approach has been illustrated in the formal treatment
of a safety-critical industrial case study of a medical communications protocol.

The work has consisted of:
1. A state-of-the-art review that has a broad perspective

e An overview of engineering methods for safety-critical systems that focuses on
user and industrial requirements. This has contained definitions of the main con-
cepts in safety engineering, especially hazards, risks and safety integrity, followed
by a discussion of safety in a software context, with the attention on complex-
ity. There has emerged consequently the need for a suitable generic model that
has safety as a central provision. Hence we have reviewed a commonly accepted

safety lifecycle model and given some motivating examples in the medical field.

o A description has been given of what are formal methods and how they provide

the rigour necessary for high integrity systems. The process of formal refinement

215

has been expressed in a (new) generic model for software development. Formal
analogues of some safety-related concepts in engineering have been identified in
the formal notions of safety and liveness. These notions have been illustrated
in a dual language approach of process algebra (LOTOS) and temporal logic,
which are the main formalisms used in the thesis. An examination of notions
of consistency has been presented together with a review of methods of proof,
covering theorem proving and model checking. Tool support for these activities

has also been reviewed.

e An indication of the level of industrial uptake has been given in a discussion
of work done in the medical field, with particular attention to medical device

communications.

2. A new framework for developing systems through stepwise refinement underpinned

by a formal perspective

o A deeper appraisal has been presented in the light of the system view to establish
the extent of the uptake of formal methods culminating in a survey of broader
approaches that allow formal methods to be anchored in the production of safety-
related software. This has led to an examination of approaches that bind formal
approaches with traditional safety analyses, concluding with an affirmation of

Methods Integration.

e A framework has been proposed based on consideration of the safety lifecycle
model. The framework includes a definition of concepts and safety-related prin-
ciples for the system and an illustration of how hazards may be captured by
formal denotation and subsequently reasoned about. The formalisation includes
a notional definition of system safety that is in terms of completeness and con-

sistency.

¢ A management perspective has been adopted for the formal refinement that is
inspired by the work of Bustard et al [BW94], but treated much more with formal
methods in mind. In this thesis, the design items have been formal models and
a generic graph model has been presented for Configuration Management, where
formal relations are required between the items, satisfying notions of behavioural

consistency as in work conducted by, e.g., Bowman et al [SBD95].

3. A new methodology that integrates the processes of deriving requirements from fault

trees with the development of a formal model

216

e A review of the use of fault tree analysis for software has been conducted which
highlights the role of formal methods in sharpening the quality of analysis. An
example has been given that shows how the close scrutiny of semantics can
expose the potential weaknesses of informal approaches, supplementing similar

other observations by Gérski [G94] and Bruns and Anderson [BA93].

o At the heart of the methodology a novel procedure FTBuild has been developed
that integrates the usually disparate activities of system safety analysis, the
refinement of formal models and their validation. The procedure achieves this

by specifying a method based on the step-by-step construction of fault trees.

¢ A common formal semantics grounded in labelled transition systems has been
defined for the fault tree analysis and system models with a procedure for deriving
safety requirements based upon events and gates in fault trees. This has included
a general means of formally evaluating events and gates, at any position in the

tree.

e Work of Bruns and Anderson[BA93] that relates fault trees to models has been
generalised to new conditions for conformance and consistency for models with
respect not just to gate conditions, but to more general requirements. This has
been supported by a discussion of issues in the formal analysis of trees; and of

criteria for relations for property conformance between trees and models.
4. An enhancement of the theory of conformance testing, with special focus on robustness

e An introduction to testing and the formal perspective has been presented, intro-
ducing the main concepts plus some examples to aid understanding of the theory

that follows.

e The Experimental System of Hennessy and De Nicola [Hen88] has been integrated
thoroughly within the Observation Framework of Lotosphere [ABet90]. The
work has centred on the reduction preorder (the conjunction of the conf relation

and trace preorder), complete with a proof that reduction is testable.

e A new unified canonical tester has been derived for the reduction preorder for
Basic LOTOS, based upon a newly defined acceptance function. In addition
there has been given a method for implementing the tester as a specially defined
LOTOS process for a subset of Full LOTOS (finite processes with predicates and

guards resolved).

217

e A number of assorted Lemmas and examples have been included to illustrate
the definitions, plus guidelines to facilitate the use of the reduction relation in
practice. The perspective is further rounded off by a discussion suggesting other

notions of conformance.

5. An industrial case study to illustrate the methodology and theory

A safety-critical system of a medical communications protocol has been analysed using

the framework and methods developed in the thesis.

o Specifications in LOTOS have been prepared and refined of part of the Link
Connection phase for the Flexport protocol[Spa89]. The refinement has been
conducted within the proposed framework, using a modular approach for the

specifications based upon the architecture of the system.

e Twoiterations of FTBuild were conducted, forming the basis for various kinds of
analysis, supported by a suite of toolsets. For the initial model (with no features),
internal consistency was shown between two views of the system — intensional
and extensional — through the demonstration of observation equivalence. For
the demonstration of safety-related properties, a canonical tester was generated
from a specification based upon the MSC in the manner prescribed earlier in the
thesis. It was shown that the initial intensional specification conformed robustly

to this, so proper link connection was assured in a finite number of steps.

o For the second iteration which included Baud Rate hunting, simulation of the
model and the development of a fault tree have been employed in tandem for the
safety analysis. These highlighted weaknesses in the document presentation and
may have revealed a fault in the definition. Specifically, it was found that the
design of the baud rate hunting process may lead to a mismatch between the two
stations: after initial contact is made, one may miss an acknowledgement from
the other and return to a state where it is still waiting for the first PDU, whilst

the other has proceeded to a later stage in link connection.

7.2 Results and Assessment of Contribution

This thesis advocates the use of formal methods for safety-critical systems. Yet,
the most valuable distinctiveness of the material here, especially the case study, lies in the

emphasis on methodological continuity from requirements through to system modelling.

218

This has enabled the rigour of formal methods to breathe through the process in a supportive
manner, thereby enhancing their role.

For the development, we have combined fault tree analysis, software management
and formal methods in such a way that they encourage greater discipline and provide

coherent analysis. These points are discussed in more detail below.

7.2.1 The safety-oriented framework

When we decided to tackle systematically the problem of validating a communica-
tions protocol, we initially dwelt on traditional concerns of formal methods, but it became
clear that demonstrating the safety of this or any other high integrity system really needs
an integrated perspective which allows one to translate safety-related engineering concepts
to a formal setting and keep them in focus throughout the software development.

So we have adopted such a perspective by producing a safety-oriented framework
which drives both the employment and further investigation of the mathematical theory. For
instance, the consideration of system hazards in section 3.5.2.1 led naturally to a formulation
of completeness and safety; this approach also was instrumental in the work on property
conformance in Chapter 4. Thus formal methods are well grounded in the needs of real
systems, rather than floating in isolation, as often appears. Basing the development around
a safety lifecycle model has meant that user requirements are kept to the fore, so properties
that are shown are relevant.

Formal methods have not gained much favour in most companies, which are not
usually prepared to suffer much disruption in their procedures to accommodate what they
generally admit is a technology that has high potential. The emergence of more national
and international standards will provide some useful impetus, but it would be much better
if companies volunteer without coercion. An important factor in this regard is education
and training, where it is worth noting that large companies with big research departments
can be expected to be aware of and employ state of the art techniques and be familiar
with all the relevant standards; problems are far more likely with small companies making
relatively small (or targeted) contributions. They rely more on external contacts such as
academic departments.

Thus we have used Methods Integration, integrating FTA with formal refinement,
itself a dual language framework, since we believe it to be a very important means of
encouraging the use of formal methods by allowing current practices to continue whilst
absorbing formal approaches. Certainly, this strategy is being investigated by a number

of centres, so our approach of matches current thinking. Our contribution is one of the

219

very few that have managed to establish proper roles for formal approaches with regards to
safety analysis.

Another important but much neglected area is software management to support
formal development. We have addressed this by bringing to bear to the refinement of spec-
ifications aspects of CM. These have a simple formal conception as has been illustrated
through a directed graph model showing how formal relations exist between design items
within CM. This has supplied a useful indication of how formal support and formal con-

struction may eventually be married.

Overall our work has shown, amongst other things, that safety-related properties
really can and do have a system basis. Also, as an indication of its viability, many of the

usual theoretical issues in formal methods are raised quite naturally.

7.2.2 The Procedures

We feel that FTBuild is a significant methodological innovation that unites the
safety analysis technique of fault tree analysis and the development of formal models. Re-
quirements are generated directly from the FTA and comparision of requirements with the
model may be performed immediately. Although we provide formal semantics based on
LTS, the procedure is independent of such semantics and as such is able to encompass all
the activities of CSDM [BCG91], one of the few models that provide a formal basis for
safety analysis.

Fault tree analysis imposes extra discipline and is difficult. It requires expertise
in fault finding and really needs the practitioner to have detailed knowledge of the kind of
system being built — a skill that is developed with experience, lying outside formal methods.
On the other hand, we contend that with appropriate tool support (intimated below) safety
analysts may successfully employ formal methods.

It should be straightforward to incorporate the procedure FTBuild within a com-
pany’s already existing safety analysis procedures. This is due to the procedure allowing
formalisation to be invoked at any stage during the development of both the fault tree and
model, which may be regarded as concurrent activities subject to any amount of mutual
constraint. The process of formalisation is flexible on a number of accounts: for any event
or gate any number of requirements may be generated, the nature of the requirements not
necessarily in terms of the events in the tree. Further, in the field of relating requrements to
models, the generalisation of the relations of consistency expressed in [BA93] should prove a

worthwhile extension that makes for more realistic use — evidenced by our case study (there

220

is no case study given in that paper).

Although the procedure is independent of particular semantics, it is worth noting
that the choice of LTS semantics has allowed for direct validation of requirements with re-
spect to models, in contrast to some Integrated methodologies that require transformations

before consistency may be checked.

7.2.3 The Main Theoretical Contribution

This thesis has properly motivated a number of issues regarding theory, especially
the need to handle complexity. A vital requirement that has been highlighted here — both in
the notion of system safety and in terms of computational concerns — is the demonstration
that formal methods can satisfy completeness as well as be able to demonstrate correctness.
Completeness is essential for safety, hence our main theoretical contribution, the work on
conformance testing, has emphasised robustness.

Robustness is the key requirement for safety-critical systems. Most work on con-
formance testing has tended to omit this consideration due to computational requirements.
However, for safety-critical systems the omission of certain behaviour can be perilous, so we
have concentrated on this issue. The LOTOSphere Consortium produced a vast output in
the early 90’s regarding testing, but relatively little has been published beyond the reports
such as [ABet90]. This may be an indication of its poor uptake, which could be due to a
number of reasons, one significant one being that the theory is subtle and hence less acces-
sible. This is probably due to the requirement that in this framework specifications cannot
be analysed directly, but only through observation.

Problems can persist if the theoretical foundations are often assumed and not
always clear to developers. This was the case for the reduction preorder that has been
established as a testing relation with respect to the Experimental System of Hennessy and
De Nicola, but in the literature we have only been able to find a brief paragraph alluding
to this link [BAL'89]. Our thorough treatment has filled in the gaps and should clarify
understanding of this fundamental relation.

The next issue that has been treated is the implementation of the tester for re-
duction. Again, this had only been alluded to due to the major obstacle of state explosion.
Nevertheless, as we have argued previously, there are finite state systems where this is not
the case. Thus the new canonical tester we have provided for reduction is beneficial and
its design leads to useful diagnostics in the case of failure. Finally, the applicability of the
tester has been demonstrated for a special class of processes through the implementation of

the tester in a subset of Full LOTOS, allowing comprehensive analysis through simulation.

221

We have also provided examples and some guidelines to clarify the use of the
reduction preorder since it is not immediately clear what conforming specifications look
like. A few of the examples show that the relation has some undesirable aspects, which has

led us to consider that some alternatives may be useful.

7.2.4 Findings from the Case Study

A novel feature of this case study was the emphasis on the safety-oriented nature of
the design, built up from consideration of user requirements, and employing methods such
as parts of software management which included RCS version control for all the specification
components. The two iterations of FTBuild procedure showed that safety analysis became
much more focused, enabling us to make observations within contexts that are perhaps more
industrially realistic. These observations are reported in chapter 6;we make just a couple

of points here — about tools and about fault tree analysis.

Having decided to use more than one toolset, the use of version control forced
us to determine the extent of their compatibility. We found that in order to make use of
verification and validation facilities for Full LOTOS, the CADP toolset was indispensible
since it was the only one that possessed a well developed component Casar (early versions
going back to the late 80s), that is able to accept as input a very useful subset of Full
LOTOS and generate a transition graph ready for input into other tools. Moreover this
toolset is still being developed and extended. It is well supported: on encountering bugs in
one of the tools (bcg), the response was swift and several hours were spent in working at
the problem.

However, this particular problem — essentially the inability of the file converter
beg-io to parse certain control characters discovered in text files — was not really resolved,
and seemed to hinge upon some fickle problem in the setup in the user account on the UNIX
system. Even though a simple alternative procedure of running the program in a temporary
directory worked OK, this showed some fragility in such tools.

Overall, the tools that have been developed are very useful and we were able to
perform analyses which would not have been possible by pen and paper. However, they still
have some way to go before they offer both a reliable and complete enough set of facilities —
for instance, it would be useful if more relations could be catered for. The greatest omission
appears to be tool support for safety case development that includes formal items.

As a prerequisite, there needs to be better integration of what is currently available:

at present there are some differences in the input accepted, though minor, which make it

222

obvious that little effort has been made in this direction. These may be largely dependent
upon greater co-operation between the tool producers: no single tool can do everything,
but if it various functions can be partitioned, then more completeness is possible and when

the toolmakers have established their respective bounds, then reliability should improve.

We have shown that the procedure FTBuild is effective by illustrating it for
aspects of the Flexport protocol, though the elaboration of fault trees is not easy. Some
of the difficulty lies in the fact that they can be developed in a variety of ways, depending
upon the viewpoint chosen in the search for causes: for instance, one can choose between
temporal and structural event causes. In this case, the generalisation at a gate can be
based on temporal inconsistencies, or faults in the physical or logical structure, which are
particularly pertinent to communication protocols. We found that some of these differences
are well highlighted by considering guidewords, adding weight to the contention that a
HAZOP-style approach is advisable in FTA. Hence, to reflect the various ways of developing
a tree, it seems preferable to talk about a family of fault trees for a given fault, derive

requirements for each and validate the model with respect to all of these.

7.3 Scope for Future Work

The formal development of Flexport within the framework is only in its initial
stages and has concentrated on bringing together common methods and tools. The frame-
work is thus an early prototype that has achieved some validity in the case study. The case
study should be continued so that some of the many issues raised, particularly in Chapter
3, may be addressed more fully. For instance, the issues surrounding change and formal
methods should become clearer if the case study is increased in scale, which would probably
require a team of developers rather than an individual. Then greater experiences could be
gained into the parts played by the processes described in sections 3.6 and 3.6.1.

Similarly, the work described in FTBuild is also a prototype in its infancy — the
procedure needs to be tested out on a wide range of examples; and the theory for relating
requirements and models needs enhancing. It would certainly be useful to extend the
Flexport specification accordingly: the continuation of the refinement, perhaps prompted
by the development of other trees, would enable a much better assessment of how well the
methodology works in practice.

In increasing the complexity of the system, proving the same underlying proper-
ties will likely require more effort, with the inclusion of more sophisticated mathematical

techniques such as the invocation of more results on processes and also the greater use of

223

temporal logic. For instance, we may no longer expect to know a priori how a link may
be established in terms of sequences of events — hence, we would seek to show equation
(6.2) rather than (6.3). The application of the testing methodology would likely change
to validating partial behaviour of the specification — perhaps showing that after a given
trace, a given specification conforms subsequently for n steps. In any case, a combination
of approaches to verification and validation seems sensible.

We list below some of the many issues that may be examined by incorporating
the remaining features of the Low Level Link Interface that were specified in the target
baselines (i.e. timing elements, flow control and error checking). It would be valuable to

address these with or without reference to the case study.

1. Notions of Correctness Bisimulation-based observation equivalence has been shown
suitable as the cornerstone for internal consistency. Bisimulation is general enough to
cover any level of abstraction. However, it is not generally suitable as a refinement
relation where behaviour is either added or removed. We have looked at the case of
removing (optional) behaviour, for which the reduction relation is more suitable. It
would be useful to look at the extension relation, which is the counterpart to reduction
in that it allows extra behaviour. How could robustness be treated then? It would
also be useful to develop some laws for processes which satisfy the various notions
of conformance, analagous to those that have been developed for equivalence and

congruence. This would enable the simplification of problems.

2. Action refinement Taking the general design methodology of step-wise refinement
requires a theory for allowing transformation from one level of abstraction to another.
We can achieve this for process algebras by grouping the processes into modules and
treating these as actions at a higher level. Or, conversely, we may transform a single
event into some process, either by the use of syntactic substitution or the definition
of a special refinement operator. This is the notion of action refinement which has
been explored in depth [AH94], but remains hardly tested in practice. For LOTOS it
has been argued that the given interleaving semantics for LOTOS makes for undue

complexity [CS93].

Action refinement may be implemented in the intensional specification of Flexport:
the single action which denotes a conversion from a packet to a sequence of PDUs
can be replaced by some process which provides more detail on the conversion. The

procedures can can then be assessed in more general contexts.

3. Safety properties In our initial specification, we were able to demonstrate through

224

an argument based on a testing preorder that some very strong properties held. On
refining the specification, this has no longer been the case and such validation may be
better performed through partial testing together with checks of properties expressed
in temporal logic. It is a fact that safety properties are preserved in specifications
that are bisimulation equivalent. But what about weaker relations? This question

ought to be examined also.

. Bxpressiveness of LOTOS as a Process Algebra The LOTOS specification of Flexport
used a number of structuring operators which allow for modularity and other aids to
style. The refinement may be extended to investigate whether or not extra components
such as flow control can be slotted in without having to reconfigure the specification.

If LOTOS is found inadequate, it should be proposed how it may be improved.

. Fxpressiveness of Process Algebras How prescriptive should an initial specification be?
Is an initial specification in a process algebra too restrictive? Would specifications in
some modal process logic [LT88] be better and if so, what notions of refinement should
be used? Can such modal specifications be eventually transformed into standard
process algebras? Some work has been done with respect to CCS that indicates that
the use of modal logic may be necessary for modelling some kinds of uncertain faults

where process algebras can ’overspecify’ [Bru95].

. Bxpressiveness of Logics How expressive are each of the temporal logics? The modal-
mu calculus has been shown powerful enough to express a range of safety properties
here and elsewhere [BA91, NC96]. During the refinement of the Flexport specification,

more elaborate properties will be needed and perhaps in some other logic to compare.

The introduction of an unreliable channel in the Flexport specification will require the
modelling of uncertainty of actions. The main mechanism for modelling uncertainty
in LOTOS is the use of non-determinism, particularly via the internal i action. It
may be established how well LOTOS handles such unreliability and worth considering

alternatives, possibly leading to the construction of some 'modal LOTOS’ (see above).

. Time Communications protocols typically have timers and allow for unreliable cir-
cumstances in transmission. For Flexport, we have already modelled a simple timing
aspect in the 'Baud Rate Hunting’ process, for which we believe the model was ade-
quate. The inclusion of more timing aspects would enable a better determination of
whether or not (unextended) process calculi are lacking in their ability to model these,

and if so why. It is widely reported that issues such as timeliness need extensions,

225

and a number of extensions have been put forward. Indeed, an international working
group has included two approaches to time in an extension of LOTOS [ISO95]. The
refinement of Flexport would supply more evidence for the validity or otherwise of

such contentions.

8. Relating requirements to models The conformance relations defined in Chapter 4 may
be refined as and when further experience is gained in applying FTBuild to case
studies. On a different note, it would be useful to compare alternative formal theories
that related fault trees to system models. Work undertaken in CSDM involving Petri
Nets could be fruitfully integrated with work into system modelling using Statecharts

[Nowicki].

9. Enhancement of the testing theory It should be fairly straightforward to apply the
tester to more specialised contexts. One may introduce conformance modulo a fixed
number of transitions. The consideration of alternative relations to reduction es-
pecially through reasoning about small examples (like our vending machine) should
lead to more insight into what is required by developers from refinement relations in

process calculi.

7.3.1 Towards a fully automated tool for formalising safety analysis

The enhancement of the methods and theory raised as issues above should even-
tually have automated support in the form of a toolset that integrates safety analysis,
configuration management and formal methods. We provide below a taste of what to aim
for.

Ideally, the safety expert should be able to formulate the requirements for the
system builder without having to know much about temporal logic. So one requirement
for the toolset would be to develop a formal language which is easy to interpret. In this
respect, one may develop a kind of 'front end’ to logical formula, in terms of a 'Natural-
looking Language’ for Safety Analysis, which we may call SAFELINGO.

Consider FTA, for example. If one looks at the events written informally in a
fault tree, it becomes evident that the phrases often make use of just simple constructs with
large amounts of repetition, particularly of some verbs and conjunctions ("when’, "until’ etc).
Most such constructs have been formalised in some language of logic. So it is conceivable
that SAFELINGO may be built up by being an essentially some logic T'L, say, but with
syntactic sugaring that has words recognisable in natural language and a sentence structure

with rules for syntax and semantics. This should be such that there is a well-defined

226

mapping for each valid sentence in SAFELINGO to a corresponding sentence in T'L.

The safety analyst is then able to express events in SAFELINGO which can then
be formally analysed. Ideally, he or she would acquire these from some dictionary, perhaps
standardised, of informal safety-related requirements and their formal counterparts in a
selection of formalisms. If the analyst finds SAFELINGO not expressive enough for some
properties, then he or she can try to formulate directly the desired event/property in T'L.

There exist already a number of graphical tools which support the construction of
fault trees — the Safety Arguments Manager (SAM) is an example. Any such tool can now
be augmented by the incorporation of SAFELINGO and T'L. If also we have a model M
such that T'L and M have the same underlying semantics, then we may have an integrated
system for conducting safety analysis and analysis of models.

The construction of fault trees and subsequent safety analysis for the model may

be then be conducted within a procedure as follows.

1. An event F is created by defining an event box type for the output plus box types for
each of the inputs.

2. F may now be written as a sentence in SAFELINGO. On-line help may consist of a

selection of template sentences to choose from.

3. Some analysis of the tree per se may follow event splitting: e.g., Chap VII of FTHand-
book [VGRHS1]:

“tank rupture due to internal over-pressure caused by continuous pump
operation for ¢ > 60 seconds”

Splitting is triggered by words ’due’ and ’caused by’, thereby giving rise to a branch

of three events. (analyst will be given option of how much to split).

4. The next stage is to generate requirements for M. (internal step): A translation from

SAFELINGO to T'L is performed
5. A gate condition may be selected from a list of choices.
6. A model M is selected according to specification and version.

7. On selecting an option ’Validate Model M for Fault Tree’, one is requested

to select validation criteria such as conformance and consistency relations (defaults

227

available) and then hit ’CR’. For some relations, this may involve selecting (with a
mouse) a selection of those events and gates defined so far. Events and gates are then
translated to T'L to be checked for the model according to the specified criteria using
some model checker (perhaps an external program). Feedback is given to indicate

whether or not the model is valid, and if not some diagnosis as to why not.

. etc.

7.3.2 Other avenues

The majority of work for process calculi has emphasised the behavioural analysis.
There has not been a great deal of consideration of data and, in particuler, relatively little
formal examination of refinement which explicitly pays attention to Abstract Data Types.
Yet data has been at the centre of the recent software engineering paradigms, such as
the various flavours of object-oriented approaches. Some consideration has been given to
LOTOS since it has a very useful subcomponent of ADTs, based on ACT ONE. There has
been some work in a formal object-oriented design framework in LOTOS [Gib93] and issues
of translation from ASN.1 to ACT ONE [Tho93b], but very little work on real-life examples.

Motivation for further research in the area comes from many applications, in-
cluding the MIB, where an object-oriented language for virtual medical objects, has been
specified in ASN.1, fitting in the top layer [SW90]. Thus, it would be useful to analyse
LOTOS’s ability to handle the modelling of data types and, especially object-oriented con-
cepts, basing the analysis on attempting LOTOS specifications of the upper layer of the
MIB. This would complement work already carried out in [CN92, NC96].

Another area is Software Metrics, which are a useful means for determining assess-
ment criteria and encouraging/promoting software quality. Although we have not discussed
them explicitly, we have actually defined at each stage in the lifecycle relations (valuations)
that lend themselves to metrics, so it would be interesting to see whether a system could

be developed to make this link worthwhile.

Here we have treated safety-related requirements. Other requirements such as
mission and performance requirements could similarly be formulated and tested for some
notion of ’conformance’, thereby leading to a potentially complete and integrated require-

ments driven methodology for validating formal models.

