The Use of Formal Methods for Safety-Critical Systems Ph.D. Thesis, 1997 Paul Trafford

Addenda et Corrigenda

This document provides a proof that the unified tester is a tester for the reduction preorder in the given context. It is to be read in conjunction with the Ph.D. thesis. You may send enquiries by email (to: pt@easynet.co.uk)

The proof requires first of all a modification in Lemma 5.6.6:

LEMMA 5.6.6 Let $S, I \in Beh_{Proc}$. Suppose $\sigma \in Tr(I|/T(S))$. Then $\forall I' \in Beh_{Proc}, \forall T' \in Beh_{Proc}$.

 $T' \neq \text{stop.} ((I || T(S) \xrightarrow{\sigma} I' || T') \land out(T') \cap \mathcal{P}_{diag} \subseteq \{success\}) \Rightarrow \Gamma(\sigma) \xrightarrow{\varepsilon} T'$

Proof The proof is as given up to the instantiation in the algorithm. Then it should continue as:

"We now consider all the ways I//T(S) reaches I'//T after σ ' to deduce the result. This amounts to showing that extending $I_k//T_k$ by $\langle x \rangle$ always gives the desired result. Through the definition of ||, *I* cannot do any action unilaterally, so T_k must perform *x*.

Suppose the tester performs the action from the first summand. Then after σ the tester can perform fail. This contradicts the hypothesis.

Suppose the tester performs success from the fourth term. Then

 $((I||T(S) \stackrel{\sigma}{\Rightarrow} I'||T')$ such that T' = stop which contradicts the hypothesis.

The two middle terms $(2^{nd} \text{ and } 3^{rd} \text{ summands})$ remain to be considered. Clearly, when

 T_k performs x from $\Gamma(\sigma_k)$ to get T' it will satisfy either $\Gamma(\sigma) = T'$ or $\Gamma(\sigma) \xrightarrow{\tau} T'$

PROPOSITION 5.6.7

Let *S* be a finite specification and *I* be a non-divergent specification. Then $I \leq_{red} S$ if and only if *I* must *T*(*S*).

Proof

(=>) Since *I* is non-divergent and T(S) is finite, then owing to the definition of ||, all computations Comp(I, T(S)) are finite, so I//T(S) eventually reaches stop. Thus it suffices to show that every termination must be a successful computation.

First we note that by construction, a successful computation must terminate in the fourth term having performed just on 'success' action.

Suppose $I || T(S) \xrightarrow{\sigma} I' || T': I' || T' \rightarrow$ Two cases arise:

1. $Tr(I//T(S)) \in L^*$

We have fail $\notin out(T')$ since otherwise $I'||T' \xrightarrow{fail}$. So by Lemma 5.6.6,

 $\Gamma(\sigma) \stackrel{\mathcal{E}}{\Rightarrow} T'$, where there are two subcases for T':

(i) $\Gamma(\sigma)=T'$. Hence, by Lemma 5.6.4, out(T')=L. Thus for deadlock to occur we require $out(I')=\emptyset$. This implies $R_I(\sigma)=\Re(L)$ and hence $\mathring{A}(\sigma)=\emptyset$. Therefore *T*', and have I'//T', can perform success. This is a contradiction.

(ii) $\Gamma(\sigma) \neq T'$. From the definition of the algorithm, we deduce $\Gamma(\sigma) \xrightarrow{\tau} T'$ where for some $A \in \mathring{A}_{s}(\sigma)$, we have $T' = \sum_{a \in A} a; \Gamma(\sigma \land \langle a \rangle)$. But from the proposition hypothesis we deduce immediately from Lemma 5.5.1 and Lemma 5.6.2 that $\mathring{A}_{l}(\sigma) \supseteq \mathring{A}_{s}(\sigma)$. Therefore $I' \xrightarrow{a}$ which is a contradiction.

Therefore case (1.) is not possible.

2. $Tr(I|/T(S)) \notin L^*$

By construction this can only occur when a single flag action has occurred just before a stop action. There are just two choices - a fail from the first summand of some Γ expression or a success from the last term.

Suppose that the termination is from the first summand. Then $\sigma = \sigma'^{\land} < b; \texttt{fail} > \texttt{where } \sigma' \in Tr(I) \texttt{ (since within } \|, I \texttt{ and } T \texttt{ participate in every action}$ before <code>fail</code>). Now since <code>fail#out(T')</code>, from Lemma 5.6.6, we have: $\Gamma(\sigma') \stackrel{\mathcal{E}}{\Longrightarrow} T'$. Therefore the first term is specifically of $\Gamma(\sigma')$. Therefore $b \notin out_{\sigma'}(S)$ which implies $b \in out_{\sigma'}(I)$ since otherwise I//T always deadlocks after σ' . Hence $\sigma'^{\land} < b > \in Tr(I)$. But $\sigma'^{\land} < b > \notin Tr(S)$ and so the proposition hypothesis is contradicted.

Thus only a successful computation is possible. \Box

(<=) It suffices to show the contrapositive, i.e.

$$\exists \sigma \in L^*. R_I(\sigma) \not\subseteq R_S(\sigma) \Rightarrow v(I || T(S)) \neq pass$$

Proof Suppose that the LHS holds. Then $\exists R \in R_I(\sigma) : R \notin R_S(\sigma)$. Let A = R. Then from the definition of acceptance sets it follows that $A \in A_S(\sigma) : A \notin A_I(\sigma)$. This implies $\exists A' \in \mathring{A}_S(\sigma) : A' \notin \mathring{A}_I(\sigma)$ (consequence of Lemma 5.6.2). Therefore, by Lemma 5.5.2, $\exists I' \in Beh_{Proc}$:

 $I||T(S) \xrightarrow{\sigma} I'||T': \forall a \in A: I' \xrightarrow{q}$. This gives rise to deadlock in the third term, i.e. to a failed

computation. \Box