
The Use of Formal Methods for Safety-Critical Systems
Ph.D. Thesis, 1997

Paul Trafford

Addenda et Corrigenda

This document provides a proof that the unified tester is a tester for the reduction preorder in
the given context. It is to be read in conjunction with the Ph.D. thesis. You may send enquiries
by email (to: pt@easynet.co.uk)

The proof requires first of all a modification in Lemma 5.6.6:

LEMMA 5.6.6 Let S,I £ BehProc . Suppose V£Tr(I||T(S)). Then �I’ £ BehProc ,�T’£ BehProc:

T’
��

 stop. ((|| () '|| ') (') { }) () 'I T S I T out T success Tdiag
σ σ ε
⇒ ∧ ∩ ⊆ ⇒ ⇒) Γ

Proof The proof is as given up to the instantiation in the algorithm. Then it should

continue as:

“We now consider all the ways I||T(S) reaches I’||T’ after V’ to deduce the result. This

amounts to showing that extending Ik||Tk by <x> always gives the desired result. Through the

definition of ||, I cannot do any action unilaterally, so Tk must perform x.

Suppose the tester performs the action from the first summand. Then after V the tester

can perform fail. This contradicts the hypothesis.

Suppose the tester performs success from the fourth term. Then

((|| () '|| ')I T S I T
σ⇒ such that T’ = stop which contradicts the hypothesis.

The two middle terms (2nd and 3rd summands) remain to be considered. Clearly, when

Tk performs x from *(Vk) to get T’ it will satisfy either *(V)=T’ or Γ() 'σ τ→ T �

PROPOSITION 5.6.7

Let S be a finite specification and I be a non-divergent specification. Then I xred S if and only

if I must T(S).

Proof

(=>) Since I is non-divergent and T(S) is finite, then owing to the definition of ||, all

computations Comp(I,T(S)) are finite, so I||T(S) eventually reaches stop. Thus it suffices to

show that every termination must be a successful computation.

Ph.D. Thesis addenda: Proof of Unified Tester Paul Trafford

2

First we note that by construction, a successful computation must terminate in the

fourth term having performed just on ‘success’ action.

Suppose I T S I T I T|| () '|| ': '|| ' /σ⇒ → Two cases arise:

1. Tr(I||T(S)) £ L*

We have fail ¤ out(T’) since otherwise I T
fail

'|| ' → . So by Lemma 5.6.6,

Γ() 'σ ε
⇒T , where there are two subcases for T’:

(i) *(V)=T’. Hence, by Lemma 5.6.4, out(T’)=L. Thus for deadlock to occur we

require out(I’)=�. This implies RI(V)=5(L) and hence Å(V)=�. Therefore T’, and

have I’||T’ , can perform success. This is a contradiction.

(ii) *(V)�T’. From the definition of the algorithm, we deduce Γ() 'σ τ → T where

for some A£ÅS(V), we have T a a
a A

' ; (^)= < >
∈
∑ Γ σ . But from the proposition

hypothesis we deduce immediately from Lemma 5.5.1 and Lemma 5.6.2 that

ÅI(V)�ÅS(V). Therefore I
a

' → which is a contradiction.

Therefore case (1.) is not possible.

2. Tr(I||T(S))¤L*

By construction this can only occur when a single flag action has occurred just before

a stop action. There are just two choices - a fail from the first summand of some *
expression or a success from the last term.

Suppose that the termination is from the first summand. Then

V=V’^<b;fail> where V’£Tr(I) (since within ||, I and T participate in every action

before fail). Now since fail¤out(T’), from Lemma 5.6.6, we have: Γ() '′ ⇒σ ε
T .

Therefore the first term is specifically of *(V’) . Therefore b¤ outV’(S) which implies

b£outV’(I) since otherwise I||T always deadlocks after V’. Hence V’^ £Tr(I). But

V’^ ¤Tr(S) and so the proposition hypothesis is contradicted.

Thus only a successful computation is possible.�

Ph.D. Thesis addenda: Proof of Unified Tester Paul Trafford

3

(<=) It suffices to show the contrapositive, i.e.

∃ ∈ /⊆ ⇒ ≠σ σ σL R R v I T S passI S* . () () (|| ())

Proof Suppose that the LHS holds. Then �R£RI(V):R¤RS(V). Let A=R. Then from the

definition of acceptance sets it follows that A£AS(V):A¤AI(V). This implies �A’£ÅS(V):A’¤
ÅI(V) (consequence of Lemma 5.6.2). Therefore, by Lemma 5.5.2, �I’ £ BehProc:

I T S I T a A I a|| () '|| ': :σ⇒ ∀ ∈ ′ /→ . This gives rise to deadlock in the third term, i.e. to a failed

computation. �

