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Addenda et Corrigenda

This document provides a proof that the unified tester is a tester for the reduction preorder in
the given context.  It is to be read in conjunction with the Ph.D. thesis.  You may send enquiries
by email (to: pt@easynet.co.uk)

The proof requires first of all a modification in Lemma 5.6.6:

LEMMA 5.6.6   Let S,I £ BehProc .  Suppose V£Tr(I||T(S)).  Then  �I’ £ BehProc ,�T’£ BehProc:

T’ 
��

 stop. (( || ( ) '|| ' ) ( ' ) { } ) ( ) 'I T S I T out T success Tdiag
σ σ ε
⇒ ∧ ∩ ⊆ ⇒ ⇒) Γ

Proof   The proof is as given up to the instantiation in the algorithm.  Then it should

continue as:

“We now consider all the ways I||T(S) reaches I’||T’  after V’ to deduce the result.  This

amounts to showing that extending Ik||Tk by <x>  always gives the desired result.  Through the

definition of ||, I cannot do any action unilaterally, so Tk must perform x.

Suppose the tester performs the action from the first summand.  Then after V  the tester

can perform fail.  This contradicts the hypothesis.

Suppose the tester performs success from the fourth term.  Then

(( || ( ) '|| ' )I T S I T
σ⇒  such that T’ = stop  which contradicts the hypothesis.

The two middle terms (2nd and 3rd summands) remain to be considered.  Clearly, when

Tk performs x from *(Vk) to get T’ it will satisfy either *(V)=T’  or Γ( ) 'σ τ→ T �

PROPOSITION 5.6.7

Let S be a finite specification and I be a non-divergent specification.  Then I xred S   if and only

if I must T(S).

Proof

(=>)  Since I is non-divergent and T(S) is finite, then owing to the definition of ||, all

computations Comp(I,T(S)) are finite, so I||T(S) eventually reaches stop.  Thus it suffices to

show that every termination must be a successful computation.
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First we note that by construction, a successful computation must terminate in the

fourth term having performed just on ‘success’ action.

Suppose I T S I T I T|| ( ) '|| ': '|| ' /σ⇒ →    Two cases arise:

1.  Tr(I||T(S)) £ L*

We have fail ¤ out(T’) since otherwise I T
fail

'|| '  → . So by Lemma 5.6.6,

Γ( ) 'σ ε
⇒T , where there are two subcases for T’:

(i) *(V)=T’.    Hence, by Lemma 5.6.4, out(T’)=L.  Thus for deadlock to occur we

require  out(I’)=�.  This implies RI(V)=5(L) and hence Å(V)=�.  Therefore T’, and

have I’||T’ , can perform success.  This is a contradiction.

(ii) *(V)�T’.  From the definition of the algorithm, we deduce Γ( ) 'σ τ → T  where

for some A£ÅS(V), we have T a a
a A

' ; ( ^ )= < >
∈
∑ Γ σ .  But from the proposition

hypothesis we deduce immediately from Lemma 5.5.1 and Lemma 5.6.2 that

ÅI(V)�ÅS(V).  Therefore I
a

'  →  which is a contradiction.

Therefore case (1.) is not possible.

2. Tr(I||T(S))¤L*

By construction this can only occur when a single flag action has occurred just before

a stop action.  There are just two choices - a fail from the first summand of some *
expression or a success from the last term.

Suppose that the termination is from the first summand.  Then

V=V’^<b;fail> where V’£Tr(I) (since within ||, I and T participate in every action

before fail).  Now since fail¤out(T’), from Lemma 5.6.6, we have: Γ( ) '′ ⇒σ ε
T .

Therefore the first term is specifically of *(V’) .  Therefore b¤ outV’(S) which implies

b£outV’(I) since otherwise I||T always deadlocks after V’.  Hence V’^<b> £Tr(I).  But

V’^<b> ¤Tr(S) and so the proposition hypothesis is contradicted.

Thus only a successful computation is possible.�
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(<=) It suffices to show the contrapositive, i.e.

∃ ∈ /⊆ ⇒ ≠σ σ σL R R v I T S passI S* . ( ) ( ) ( || ( ))

Proof    Suppose that the LHS holds.  Then �R£RI(V):R¤RS(V).  Let A=R.  Then from the

definition of acceptance sets it follows that A£AS(V):A¤AI(V).  This implies �A’£ÅS(V):A’¤
ÅI(V) (consequence of Lemma 5.6.2).  Therefore, by Lemma 5.5.2, �I’ £ BehProc:

I T S I T a A I a|| ( ) '|| ': :σ⇒ ∀ ∈ ′ /→ .  This gives rise to deadlock in the third term, i.e. to a failed

computation. �


